Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 4

Issues

Crystal structure and Hirshfeld analysis of the kryptoracemate: bis(mefloquinium) chloride p-fluorobenzenesulphonate

Mukesh M. Jotani
  • Corresponding author
  • Bhavan’s Sheth R. A. College of Science, Department of Physics, Ahmedabad, Gujarat 380001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James L. Wardell
  • Corresponding author
  • Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward R.T. Tiekink
  • Corresponding author
  • Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-21 | DOI: https://doi.org/10.1515/zkri-2015-1914

Abstract

The crystal structure analysis of the bis(mefloquinium) chloride p-fluorobenzenesulphonate salt reveals a rare example of a kryptoracemate given that the cations exhibit a non-crystallographic enantiomeric relationship. The conformations of the cations are based on a skewed letter L with the (piperidinium-2-yl)methanol group sitting almost normal to and directed away from the quinolinyl residue. The most prominent feature of the molecular packing is the formation of supramolecular helical chains along the a-axis, being sustained by pairs of hydroxyl-O–H···O (sulphonate), piperidinium-N–H···O (sulphonate) and piperidinium-N–H···Cl hydrogen bonds. Geometric and Hirshfeld surface analyses of the crystal structure shows significant differences in supramolecular aggregation between the cations due to the presence of different anions and this is the likely reason for the observed kryptoracemic behaviour.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure analysis; Hirshfeld surface; kryptoracemate; Mefloquine; X-ray diffraction

References

  • [1]

    J. D. Maguire, Krisin, H. Marwoto, T. L. Richie, D. J. Fryauff, J. K. Baird, Clin. Infect. Dis. 2006, 42, 1067.Google Scholar

  • [2]

    C. M. Kunin, W. Y. Ellis, Antimicrob. Agents. Chemother. 2000, 44, 848.Google Scholar

  • [3]

    J. Mao, Y. Wang, B. Wan, A. P. Kozikowski, S. G. Franzblau, ChemMedChem 2007, 2, 1624.Google Scholar

  • [4]

    S. Jayaprakash, Y. Iso, B. Wan, S. G. Franzblau, A. P. Kozikowski, ChemMedChem 2006, 1, 593.Google Scholar

  • [5]

    R. S. B. Goncalves, C. R. Kaiser, M. C. S. Lourenco, F. A. F. M. Bezerra, M. V. N. de Souza, J. L. Wardell, S. M. S. V. Wardell, M. das G. M. de O. Henriques, T. Costa, Bioorg. Med. Chem. 2012, 20, 243.Google Scholar

  • [6]

    L. E. Bermudez, P. Kolonoski, L. E. Seitz, M. Petrofsky, R. Reynolds, M. Wu, L. S. Young, Antimicrob. Agents Chemother. 2004, 48, 3556.Google Scholar

  • [7]

    M. V. N. de Souza, R. S. B. Goncalves, F. A. R. Rodrigues, B. C. Cavalcanti, I. da S. Bomfim, C. do Ó Pessoa, J. L. Wardell, S. M. S. V. Wardell, Chem. Biol. Drug Des. 2014, 83, 126.Google Scholar

  • [8]

    I. Bernal, ACA Annual Meeting, Montreal, Quebec, Canada, 1995. Abstract 4.a.1.e.Google Scholar

  • [9]

    E. Pidcock, W. D. S. Motherwell, J. C. Cole, Acta Crystallogr. B 2003, 59, 634.Google Scholar

  • [10]

    E. Pidcock, Chem. Commun. 2005, 3457.Google Scholar

  • [11]

    L. Fabian, C. P. Brock, Acta Crystallogr. B 2010, 66, 94.Google Scholar

  • [12]

    I. Bernal, S. Watkins, Acta Crystallogr. C 2015, 71, 216.Google Scholar

  • [13]

    CrystalClear-SM Expert. User Manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX, 2011.Google Scholar

  • [14]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.Google Scholar

  • [15]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.Google Scholar

  • [16]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.Google Scholar

  • [17]

    A. L. Spek, Acta Crystallogr. D 2009, 65, 148.Google Scholar

  • [18]

    J. Gans, D. Shalloway, J. Mol. Graph. Model. 2001, 19, 557.Google Scholar

  • [19]

    DIAMOND, Visual Crystal Structure Information System, Version 3.1, CRYSTAL IMPACT, Postfach 1251, D-53002, 2006.Google Scholar

  • [20]

    C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466.Google Scholar

  • [21]

    A. Skórska, J. Śliwiński, B. J. Oleksyn, Bioorg. Med. Chem. Lett. 2006, 16, 850.Google Scholar

  • [22]

    A. Dassonville-Klimpt, C. Cezard, C. Mullie, P. Agnamey, A. Jonet, S. Da Nascimento, M. Marchivie, J. Guillon, P. Sonnet, ChemPlusChem 2013, 78, 642.Google Scholar

  • [23]

    J. M. Karle, I. L. Karle, Antimicrob. Agents Chemother. 2002, 46, 1529.Google Scholar

  • [24]

    A. Pitaluga, L. D. Prado, R. Seisceiras, J. L. Wardell, S. M. S. V. Wardell, Int. J. Pharm. 2010, 398, 50.Google Scholar

  • [25]

    J. M. Karle, I. L. Karle, Acta Crystallogr. C 1991, 47, 2391.Google Scholar

  • [26]

    J. L. Wardell, M. V. N. de Souza, S. M. S. V. Wardell, M. C. S. Lourenco, J. Mol. Struct. 2011, 990, 67.Google Scholar

  • [27]

    S. M. S. V. Wardell, J. L. Wardell, J. M. S. Skakle, E. R. T. Tiekink, Z. Kristallogr. 2011, 226, 68.Google Scholar

  • [28]

    M. V. N. de Souza, J. L. Wardell, S. M. S. V. Wardell, S. W. Ng, E. R. T. Tiekink, Acta Crystallogr. E 2011, 67, o3019.Google Scholar

  • [29]

    J. A. Obaleye, M. R. Caira, A. C. Tella, Struct. Chem. 2009, 20, 859.Google Scholar

  • [30]

    J. L. Wardell, S. M. S. V. Wardell, E. R. T. Tiekink, G. M. de Lima, Acta Crystallogr. E 2010, 66, m336.Google Scholar

  • [31]

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer, (Version 3.1), University of Western Australia, 2012.Google Scholar

  • [32]

    M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm 2008, 10, 377.Google Scholar

  • [33]

    D. Jayatilaka, D. J. Grimwood, A. Lee, A. Lemay, A. J. Russel, C. Taylor, C., S. K. Wolff, C. Chenai, A. Whitton, TONTO – A System for Computational Chemistry, 2005. Available at: http://hirshfeldsurface.net/.

  • [34]

    A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. Mackinon, B. Kahr, Cryst. Growth Des. 2008, 8, 4517.Google Scholar

About the article

Received: 2015-11-19

Accepted: 2015-12-15

Published Online: 2016-01-21

Published in Print: 2016-04-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 231, Issue 4, Pages 247–255, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2015-1914.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in