Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 7

Issues

Bis[bis(N-2-hydroxyethyl,N-isopropyl-dithiocarbamato)mercury(II)]2: crystal structure and Hirshfeld surface analysis

Mukesh M. Jotani
  • Corresponding author
  • Bhavan’s Sheth R. A. College of Science, Department of Physics, Ahmedabad, Gujarat 380001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yee Seng Tan
  • Sunway University, Centre for Crystalline Materials, Faculty of Science and Technology, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward R.T. Tiekink
  • Corresponding author
  • Sunway University, Centre for Crystalline Materials, Faculty of Science and Technology, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-21 | DOI: https://doi.org/10.1515/zkri-2016-1943

Abstract

The presence of both κ2-chelating and μ22-tridentate bridging dithiocarbamate ligands in centrosymmetric {Hg[S2CN(iPr)CH2CH2OH]2}2 (1) leads to globular aggregates that are linked into a three-dimensional architecture via hydroxyl-O–H···O(hydroxy) hydrogen bonding. The structure contrasts that of Hg[S2CN(CH2CH2OH)2]2 (2; this is a literature structure) in which square planar units are connected into supramolecular chains via Hg···S secondary bonding; chains are connected in the crystal structure by hydroxyl-O–H···O(hydroxy) hydrogen bonding. A Hirshfeld surface analysis on 1 and 2 reveal the influence of O–H···O and Hg···S interactions on the molecular packing as well as the distinctive interactions, such as C–H···S interactions in 1 and C–H···π (HgS2C) contacts in 2. A bibliographic survey shows the different structural motifs observed for 1 and 2 are complimented by an additional five motifs for binary mercury(II) dithiocarbamates revealing a fascinating structural diversity for this class of compound.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure analysis; Hirshfeld surface; hydrogen bonding; mercury dithiocarbamate; X-ray diffraction

References

  • [1]

    E. R. T. Tiekink, CrystEngComm 2003, 5, 101.Google Scholar

  • [2]

    M. J. Cox, E. R. T. Tiekink, Rev. Inorg. Chem. 1997, 17, 1.Google Scholar

  • [3]

    C. Chieh, S. K. Cheung, Can. J. Chem. 1981, 59, 2746.Google Scholar

  • [4]

    Y. S. Tan, S. N. A. Halim, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 55.Google Scholar

  • [5]

    Y. S. Tan, A. L. Sudlow, K. C. Molloy, Y. Morishima, K. Fujisawa, W. J. Jackson, W. Henderson, S. N. Bt. A. Halim, S. W. Ng, E. R. T. Tiekink, Cryst. Growth Des. 2013, 13, 3046.Google Scholar

  • [6]

    Y. Bing, X. Li, M. Zha, Y. Lu, Acta Crystallogr. E 2010, 66, m1500.Google Scholar

  • [7]

    L. H. van Poppel, T. L. Groy, M. T. Caudle, Inorg. Chem. 2004, 43, 3180.Google Scholar

  • [8]

    R. E. Benson, C. A. Ellis, C. E. Lewis, E. R. T. Tiekink, CrystEngComm 2007, 9, 930.Google Scholar

  • [9]

    R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, J. Chem. Crystallogr. 2009, 39, 293.Google Scholar

  • [10]

    S. A. M. Safbri, S. N. A. Halim, M. M. Jotani, E. R. T. Tiekink, Acta Crystallogr. E 2016, 72, 158.Google Scholar

  • [11]

    S. A. M. Safbri, S. N. A. Halim, E. R. T. Tiekink, Acta Crystallogr. E 2016, 72, 203.Google Scholar

  • [12]

    N. S. Jamaludin, Z.-J. Goh, Y. K. Cheah, K.-P. Ang, J. H. Sim, C. H. Khoo, Z. A. Fairuz, S. N. B. A. Halim, S. W. Ng, H.-L. Seng, E. R. T. Tiekink, Eur. J. Med. Chem. 2013, 67, 127.Google Scholar

  • [13]

    D. H. A. Ishak, K. K. Ooi, K. P. Ang, A. Md. Akim, Y. K. Cheah, N. Nordin, S. N. B. A. Halim, H.-L. Seng, E. R. T. Tiekink, J. Inorg. Biochem. 2014, 130, 38.Google Scholar

  • [14]

    Y. S. Tan, K. K. Ooi, K. P. Ang, A. Md Akim, Y.-K. Cheah, S. N. A. Halim, H.-L. Seng, E. R. T. Tiekink, J. Inorg. Biochem. 2015, 150, 48.Google Scholar

  • [15]

    J.-H. Sim, N. S. Jamaludin, C.-H. Khoo, Y.-K. Cheah, S. N. B. A. Halim, H.-L. Seng, E. R. T. Tiekink, Gold Bull. 2014, 47, 225.Google Scholar

  • [16]

    N. S. Jamaludin, S. N. A. Halim, C.-H. Khoo, B.-J. Chen, T.-H. See, J.-H. Sim, Y.-K. Cheah, H.-L. Seng, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 341.Google Scholar

  • [17]

    R. A. Howie, G. M. de Lima, D. C. Menezes, J. L. Wardell, S. M. S. V. Wardell, D. J. Young, E. R. T. Tiekink, CrystEngComm 2008, 10, 1626.Google Scholar

  • [18]

    Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.Google Scholar

  • [19]

    G. M. Sheldrick, SADABS. University of Göttingen, Germany, 1996.Google Scholar

  • [20]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.Google Scholar

  • [21]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.Google Scholar

  • [22]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.Google Scholar

  • [23]

    A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.Google Scholar

  • [24]

    K. Brandenburg, DIAMOND. Crystal Impact GbR, Bonn, Germany, 2006.Google Scholar

  • [25]

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012.Google Scholar

  • [26]

    J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. B 2004, 60, 627.Google Scholar

  • [27]

    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.Google Scholar

  • [28]

    N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15, 1.Google Scholar

  • [29]

    I. Haiduc, in Encyclopedia of Supramolecular Chemistry, (Eds. J. L. Atwood and J. Steed) Marcel Dekker Inc., New York, p. 1215, 2004.Google Scholar

  • [30]

    D. Chen, C. S. Lai, E. R. T. Tiekink, Z. Kristallogr. 2003, 218, 747.Google Scholar

  • [31]

    E. R. T. Tiekink, I. Haiduc, Prog. Inorg. Chem. 2005, 54, 127.Google Scholar

  • [32]

    E. R. T. Tiekink, J. Zukerman-Schpector, Chem. Commun. 2011, 47, 6623.Google Scholar

  • [33]

    J. Zukerman-Schpector, E. R. T. Tiekink, in The Importance of Pi-Interactions in Crystal Engineering – Frontiers in Crystal Engineering, (Eds. E. R. T. Tiekink and J. Zukerman-Schpector) John Wiley & Sons Ltd, Singapore, pp. 275–299, 2012.Google Scholar

  • [34]

    A. N. Gupta, V. Kumar, V. Singh, K. K. Manar, M. G. B. Drew, N. Singh, CrystEngComm 2014, 16, 9299.Google Scholar

  • [35]

    Y. S. Tan, S. N. A. Halim, K. C. Molloy, A. L. Sudlow, A. Otero-de-la-Roza, E. R. T. Tiekink, CrystEngComm 2016, 18, 1105.Google Scholar

  • [36]

    M. K. Milčič, V. B. Medaković, D. N. Sredojević, N. O. Juranić, Z. D. Tomić and S. D. Zarić, Inorg. Chem. 2006, 45, 4755.Google Scholar

  • [37]

    E. R. T. Tiekink, CrystEngComm 2006, 8, 104.Google Scholar

  • [38]

    C. Jelsch, K. Ejsmont, L. Huder, IUCrJ 2014, 1, 119.Google Scholar

  • [39]

    C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. B 2016, 72, 171.Google Scholar

  • [40]

    M. J. Cox, E. R. T. Tiekink, Z. Kristallogr. 2010, 212, 542.Google Scholar

  • [41]

    P. C. Healy, A. H. White, J. Chem. Soc., Dalton Trans. 1973, 284.Google Scholar

  • [42]

    C. S. Lai, E. R. T. Tiekink, Z. Kristallogr. – New Cryst. Struct. 2002, 217, 593.Google Scholar

  • [43]

    D. V. Konarev, S. S. Khasanov, D. V. Lopatin, V. V. Rodaev, R. N. Lyubovskaya, Russ. Chem. Bull. 2007, 56, 2145.Google Scholar

  • [44]

    M. Ito, H. Iwasaki H, Acta Crystallogr. B 1979, 35, 2720.Google Scholar

  • [45]

    M. J. Cox, E. R. T. Tiekink, Z. Kristallogr. 1999, 214, 571.Google Scholar

  • [46]

    M. J. Cox, E. R. T. Tiekink, Main Group Met. Chem. 2000, 23, 793.Google Scholar

  • [47]

    G. Gomathi, S. H. Dar, S. Thirumaran, S. Ciattini, S. Selvanayagam, C. R. Chim. 2015, 18, 499.Google Scholar

  • [48]

    C. S. Lai, E. R. T. Tiekink, Appl. Organomet. Chem. 2004, 18, 104.Google Scholar

  • [49]

    M. K. Yadav, G. Rajput, A. N. Gupta, V. Kumar, M. G. B. Drew, N. Singh, Inorg. Chim. Acta 2014, 421, 210.Google Scholar

  • [50]

    D. C. Onwudiwe, P. A. Ajibade, Int. J. Mol. Sci. 2011, 12, 1964.Google Scholar

  • [51]

    M. Green, P. Prince, M. Gardener, J. Steed, Adv. Mater. 2004, 16, 994.Google Scholar

  • [52]

    D. Ondrusova, M. Koman, E. Jona, M. Koman, Solid State Phenom. 2003, 90, 383.Google Scholar

  • [53]

    E. Guzmán-Percástegui, L. N. Zakharov, J. G. Alvarado-Rodríguez, M. E. Carnes, D. W. Johnson, Cryst. Growth Des. 2014, 14, 2087.Google Scholar

  • [54]

    S. H. Dar, S. Thirumaran, S. Ciattini, S. Selvanayagam, S. Polyhedron 2015, 96, 16.Google Scholar

  • [55]

    G. Rajput, M. K. Yadav, T. S. Thakur, M. G. B. Drew, N. Singh, Polyhedron 2014, 69, 225.Google Scholar

  • [56]

    V. Singh, V. Kumar, A. N. Gupta, M. G. B. Drew, N. Singh, New J. Chem. 2014, 38, 3737.Google Scholar

  • [57]

    V. Singh, A. Kumar, R. Prasad, G. Rajput, M. G. B. Drew, N. Singh, CrystEngComm 2011, 13, 6817.Google Scholar

  • [58]

    A. Kumar, R. Chauhan, K. C. Molloy, G. Kociok-Kohn, L. Bahadur, N. Singh, Chem.-Eur. J. 2010, 16, 4307.Google Scholar

  • [59]

    C. S. Lai, E. R. T. Tiekink, Appl. Organomet. Chem. 2003, 17, 143.Google Scholar

  • [60]

    M. Altaf, H. Stoeckli-Evans, S. S. Batool, A. A. Isab, S. Ahmad, M. Saleem, S. A. Awan, M. A. Shaheen, J. Coord. Chem. 2010, 63, 1176.Google Scholar

  • [61]

    A. V. Ivanov, E. V. Korneeva, B. V. Bukvetskii, A. S. Goryan, O. N. Antsutkin, W. Forshling, Russ. J. Coord. Chem. 2008, 34, 59.Google Scholar

  • [62]

    A. Benedetti, A. C. Fabretti, C. Preti, J. Crystallogr. Spectrosc. Res. 1988, 18, 685.Google Scholar

  • [63]

    G. Marimuthu, K. Ramalingam, C. Rizzoli, J. Coord. Chem. 2013, 66, 699.Google Scholar

  • [64]

    N. Srinivasan, S. Thirumaran, S. Ciattini, RSC Adv. 2014, 4, 22971.Google Scholar

  • [65]

    A. Bondi, J. Phys. Chem. 1964, 68, 441.Google Scholar

  • [66]

    H. Iwasaki, Acta Crystallogr. B 1973, 29, 2115.Google Scholar

About the article

Corresponding authors: Mukesh M. Jotani, PhD, Bhavan’s Sheth R. A. College of Science, Department of Physics, Ahmedabad, Gujarat 380001, India; and Edward R. T. Tiekink, DSc, Sunway University, Centre for Crystalline Materials, Faculty of Science and Technology, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia


Received: 2016-03-09

Accepted: 2016-04-14

Published Online: 2016-05-21

Published in Print: 2016-07-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 231, Issue 7, Pages 403–413, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1943.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Mukesh M. Jotani, Pavel Poplaukhin, Hadi D. Arman, and Edward R. T. Tiekink
Acta Crystallographica Section E Crystallographic Communications, 2016, Volume 72, Number 8, Page 1085

Comments (0)

Please log in or register to comment.
Log in