Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 7

Issues

Superspace description of trimethyltin hydroxide at T = 100 K

Somnath Dey
  • Laboratory of Crystallography, University of Bayreuth, BGI-Building, Universitätsstraße, 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Schönleber
  • Corresponding author
  • Laboratory of Crystallography, University of Bayreuth, BGI-Building, Universitätsstraße, 30, D-95440 Bayreuth, Germany, Tel.: +49-921-553879, Fax: +49-921-553770
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Swastik Mondal
  • Laboratory of Crystallography, University of Bayreuth, BGI-Building, Universitätsstraße, 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sander van Smaalen
  • Laboratory of Crystallography, University of Bayreuth, BGI-Building, Universitätsstraße, 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/zkri-2016-1952

Abstract

At low temperatures the metalorganic compound trimethyltin hydroxide, (CH3)3SnOH, possesses a commensurately modulated crystal structure, the modulation wave vector can be described as q=12c. The crystal structure is studied by analysing single-crystal X-ray diffraction data within the (3+1)-dimensional superspace approach and superspace group P21212(00γ)00s. The corresponding twofold superstructure has space group symmetry P212121. The structure is characterised by polymeric chains running along c-axis, generated by Sn–O–Sn bridges between neighbouring Sn atoms and packed in a distorted hexagonal pattern and linked via C–H···O interstrand hydrogen bonds along the (orthorhombic) directions [110] and [11̅0], but not along [100].

Keywords: commensurate modulation; hydrogen bond; polymeric chain; superspace approach; superstructure

References

  • [1]

    S. L. Price, Predicting crystal structures of organic compounds. Chem. Soc. Rev. 2014, 43, 2098.Google Scholar

  • [2]

    A. Schönleber, Organic molecular compounds with modulated crystal structures. Z. Kristallogr. 2011, 226, 499.Web of ScienceGoogle Scholar

  • [3]

    M. A. Siegler, S. Parkin, C. P. Brock, [Ni(MeCN)(H2O)2(NO3)2].(15-crown-5).MeCN: detailed study of a four-phase sequence that includes an intermediate modulated phase. Acta Crystallogr. B 2012, 68, 389.Google Scholar

  • [4]

    A. Subashini, S. Leela, K. Ramamurthi, A. Arakcheeva, H. Stoeckli-Evans, V. Petricek, G. Chapuis, Ph. Pattison, Ph. Reji, Synthesis, growth and characterization of 4-bromo-4′-nitrobenzylidene aniline (BNBA): a novel nonlinear optical material with a (3+1)-dimensional incommensurately modulated structure. CrystEngComm. 2013, 15, 2474.Web of ScienceGoogle Scholar

  • [5]

    A. Schönleber, S. van Smaalen, H.-Ch. Weiss, A. J. Kesel, N–H···O and C–H···F hydrogen bonds in the incommensurately modulated crystal structure of adamantan-1-ammonium 4-fluorobenzoate. Acta Crystallogr. 2014, B70, 652.Web of ScienceGoogle Scholar

  • [6]

    C. B. Pinheiro, A. M. Abakumov, Superspace crystallography: a key to the chemistry and properties. IUCrJ 2015, 2, 137.Google Scholar

  • [7]

    X. Zhang, H. Zhao, L. Palatinus, K. J. Gagnon, J. Bacsa, K. R. Dunbar, Self-assembly of organocyanide dianions and metal–organic macrocycles into polymeric architectures including an unprecedented quadruple helical aperiodic structure. Cryst. Growth Des. 2016, 16, 1805.Web of ScienceGoogle Scholar

  • [8]

    S. van Smaalen, Incommensurate Crystallography, Oxford University Press, Oxford, 2012.Google Scholar

  • [9]

    A. Schönleber, Ph. Pattison, G. Chapuis, The (3+1)-dimesional superspace description of the commensurately modulated structure of p-chlorobenzamide (α-form) and its relation to the γ-form. Z. Kristallogr. 2003, 218, 507.Google Scholar

  • [10]

    L. Noohinejad, S. Mondal, A. Wölfel, Sk I. Ali, A. Schönleber, S. van Smaalen, Ferroelectricity of phenazine-chloranilic acid at T=100 K. J. Chem. Crystallogr. 2014, 44, 387.Google Scholar

  • [11]

    N. Kasai, K. Yasuda, R. Okawara, The crystal structure of trimethyltin hydroxide. J. Organomet. Chem. 1965, 3, 169.Google Scholar

  • [12]

    K. M. Anderson, S. E. Tallentire, M. R. Probert, A. E. Goeta, B. G. Mendis, J. W. Steed, Trimethyltin hydroxide: a crystallographic and high Z′ curiosity. Cryst. Growth Des. 2011, 11, 820.Google Scholar

  • [13]

    R. Okawara, K. Yasuda, Occurence of dimeric trimethyltin hydroxide. J. Organometal. Chem. 1964, 1, 356.Google Scholar

  • [14]

    H. Kriegsmann, H. Hoffmann, S. Pischtschan, Untersuchungen an Zinnverbindungen. II. Schwingungsspektren und chemisches Verhalten von Trimethylzinnhydroxyd und Hexamethyldistannoxan. Z. Anorg. Allg. Chem. 1962, 315, 283.Google Scholar

  • [15]

    A. Hargreaves, S. Hasan Rizvi, The crystal and molecular structure of biphenyl. Acta Crystallogr. 1962, 15, 365.Google Scholar

  • [16]

    H. Cailleau, F. Moussa, J. Mons, Incommensurate phases in biphenyl. Solid State Comm. 1979, 31, 521.Google Scholar

  • [17]

    C. Glidewell, D. C. Liles, The crystal and molecular structures of hydroxotriphenyltin(IV) and hydroxotriphenyllead(IV). Acta Crystallogr. 1978, B34, 129.Google Scholar

  • [18]

    G. B. Deacon, E. Lawrenz, K. T. Nelson, E. R. T. Tiekink, Crystal structure of polymeric triethyltin hydroxide. Main Group Met. Chem. 1993, 16, 265.Google Scholar

  • [19]

    A. M. Domingos, G. M. Sheldrick, Trimethyltin methoxide. Acta Crystallogr. 1974, B30, 519.CrossrefGoogle Scholar

  • [20]

    B. J. Hathaway, D. E. Webster, Trimethyltin tetrafluoroborate: infrared evidence of covalently bonded tetrafluoroborate anion. Proc. Chem. Soc. 1963, 14.Google Scholar

  • [21]

    R. Okawara, M. Ohara, The infrared and far infrared spectra of trialkyltin formates: presence of a linear polymer in the solid state and in solution. J. Organometal. Chem. 1964, 1, 360.Google Scholar

  • [22]

    H. Kriegsmann, S. Pischtschan, Untersuchungen an Zinnverbindungen. I. Schwingungsspektren, Konstitution und Assoziation von Trimethylzinnderivaten. Z. Anorg. Allg. Chem. 1961, 308, 212.Google Scholar

  • [23]

    F. G. A Stone, Robert West, (Eds), Advances in Organometallic Chemistry, Volume 5, Academic Press, Cambridge, Massachusetts, 1967.Google Scholar

  • [24]

    K. Brandenburg, H. Putz, DiamondCrystal and Molecular Structure Visualization, Crystal Impact GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, 2014.

  • [25]

    S. Parsons, C. Pulham, P. Wood, CCDC 247854: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre, CSD refcode = TMESNH01, 2004.

  • [26]

    C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge structural database. Acta Crystallogr. 2016, B72, 171.Google Scholar

  • [27]

    T. Janssen, G. Chapuis, M. de Boissieu, Aperiodic Crystals, Oxford University Press, Oxford, 2007.Google Scholar

  • [28]

    H. T. Stokes, B. J. Campbell, S. van Smaalen, Generation of (3+d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallogr. 2011, A67, 45.Web of ScienceGoogle Scholar

  • [29]

    S. van Smaalen, B. J. Campbell, H. T. Stokes, Equivalence of superspace groups. Acta Crystallogr. 2013, A69, 75.CrossrefGoogle Scholar

  • [30]

    Rigaku Oxford Diffraction, Crysalispro Software system, version 1.171.38.41. Rigaku Corporation, Oxford, UK, 2015.

  • [31]

    A. M. M. Schreurs, X. Xian, L. M. J. Kroon-Batenburg, Eval15: a diffraction data integration method based on ab initio predicted profiles. J. Appl. Crystallogr. 2010, 43, 70.Google Scholar

  • [32]

    Bruker, Sadabs 2008/1, Bruker AXS Inc., Madison, WI, USA, 2008.

  • [33]

    L. Palatinus, The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1.CrossrefGoogle Scholar

  • [34]

    L. Palatinus, G. Chapuis, Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786.Web of ScienceGoogle Scholar

  • [35]

    V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [36]

    V. Petricek, V. Eigner, M. Dusek, A. Cejchan, Discontinuous modulation functions and their application for analysis of modulated structures with the computing system Jana2006. Z. Kristallogr. 2016, 231, 301.Google Scholar

  • [37]

    R. S. Rowland, R. Taylor, Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996, 100, 7384.Google Scholar

  • [38]

    G. R. Desiraju. The C–H···O hydrogen bond: Structural implications and supramolecular design. Acc. Chem. Res. 1996, 29, 441.Google Scholar

  • [39]

    Y. Gu, T. Kar, S. Scheiner, Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? J. Am. Chem. Soc. 1999, 121, 9411.Google Scholar

About the article

Received: 2016-04-13

Accepted: 2016-05-14

Published Online: 2016-06-11

Published in Print: 2016-07-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 231, Issue 7, Pages 427–434, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1952.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. I. Dey, A. Schönleber, S. Mondal, S. I. Ali, and S. van Smaalen
Crystal Growth & Design, 2018

Comments (0)

Please log in or register to comment.
Log in