[1]
S. L. Price, Predicting crystal structures of organic compounds. Chem. Soc. Rev. 2014, 43, 2098.Google Scholar
[2]
A. Schönleber, Organic molecular compounds with modulated crystal structures. Z. Kristallogr. 2011, 226, 499.Web of ScienceGoogle Scholar
[3]
M. A. Siegler, S. Parkin, C. P. Brock, [Ni(MeCN)(H2O)2(NO3)2].(15-crown-5).MeCN: detailed study of a four-phase sequence that includes an intermediate modulated phase. Acta Crystallogr. B 2012, 68, 389.Google Scholar
[4]
A. Subashini, S. Leela, K. Ramamurthi, A. Arakcheeva, H. Stoeckli-Evans, V. Petricek, G. Chapuis, Ph. Pattison, Ph. Reji, Synthesis, growth and characterization of 4-bromo-4′-nitrobenzylidene aniline (BNBA): a novel nonlinear optical material with a (3+1)-dimensional incommensurately modulated structure. CrystEngComm. 2013, 15, 2474.Web of ScienceGoogle Scholar
[5]
A. Schönleber, S. van Smaalen, H.-Ch. Weiss, A. J. Kesel, N–H···O and C–H···F hydrogen bonds in the incommensurately modulated crystal structure of adamantan-1-ammonium 4-fluorobenzoate. Acta Crystallogr. 2014, B70, 652.Web of ScienceGoogle Scholar
[6]
C. B. Pinheiro, A. M. Abakumov, Superspace crystallography: a key to the chemistry and properties. IUCrJ 2015, 2, 137.Google Scholar
[7]
X. Zhang, H. Zhao, L. Palatinus, K. J. Gagnon, J. Bacsa, K. R. Dunbar, Self-assembly of organocyanide dianions and metal–organic macrocycles into polymeric architectures including an unprecedented quadruple helical aperiodic structure. Cryst. Growth Des. 2016, 16, 1805.Web of ScienceGoogle Scholar
[8]
S. van Smaalen, Incommensurate Crystallography, Oxford University Press, Oxford, 2012.Google Scholar
[9]
A. Schönleber, Ph. Pattison, G. Chapuis, The (3+1)-dimesional superspace description of the commensurately modulated structure of p-chlorobenzamide (α-form) and its relation to the γ-form. Z. Kristallogr. 2003, 218, 507.Google Scholar
[10]
L. Noohinejad, S. Mondal, A. Wölfel, Sk I. Ali, A. Schönleber, S. van Smaalen, Ferroelectricity of phenazine-chloranilic acid at T=100 K. J. Chem. Crystallogr. 2014, 44, 387.Google Scholar
[11]
N. Kasai, K. Yasuda, R. Okawara, The crystal structure of trimethyltin hydroxide. J. Organomet. Chem. 1965, 3, 169.Google Scholar
[12]
K. M. Anderson, S. E. Tallentire, M. R. Probert, A. E. Goeta, B. G. Mendis, J. W. Steed, Trimethyltin hydroxide: a crystallographic and high Z′ curiosity. Cryst. Growth Des. 2011, 11, 820.Google Scholar
[13]
R. Okawara, K. Yasuda, Occurence of dimeric trimethyltin hydroxide. J. Organometal. Chem. 1964, 1, 356.Google Scholar
[14]
H. Kriegsmann, H. Hoffmann, S. Pischtschan, Untersuchungen an Zinnverbindungen. II. Schwingungsspektren und chemisches Verhalten von Trimethylzinnhydroxyd und Hexamethyldistannoxan. Z. Anorg. Allg. Chem. 1962, 315, 283.Google Scholar
[15]
A. Hargreaves, S. Hasan Rizvi, The crystal and molecular structure of biphenyl. Acta Crystallogr. 1962, 15, 365.Google Scholar
[16]
H. Cailleau, F. Moussa, J. Mons, Incommensurate phases in biphenyl. Solid State Comm. 1979, 31, 521.Google Scholar
[17]
C. Glidewell, D. C. Liles, The crystal and molecular structures of hydroxotriphenyltin(IV) and hydroxotriphenyllead(IV). Acta Crystallogr. 1978, B34, 129.Google Scholar
[18]
G. B. Deacon, E. Lawrenz, K. T. Nelson, E. R. T. Tiekink, Crystal structure of polymeric triethyltin hydroxide. Main Group Met. Chem. 1993, 16, 265.Google Scholar
[19]
A. M. Domingos, G. M. Sheldrick, Trimethyltin methoxide. Acta Crystallogr. 1974, B30, 519.CrossrefGoogle Scholar
[20]
B. J. Hathaway, D. E. Webster, Trimethyltin tetrafluoroborate: infrared evidence of covalently bonded tetrafluoroborate anion. Proc. Chem. Soc. 1963, 14.Google Scholar
[21]
R. Okawara, M. Ohara, The infrared and far infrared spectra of trialkyltin formates: presence of a linear polymer in the solid state and in solution. J. Organometal. Chem. 1964, 1, 360.Google Scholar
[22]
H. Kriegsmann, S. Pischtschan, Untersuchungen an Zinnverbindungen. I. Schwingungsspektren, Konstitution und Assoziation von Trimethylzinnderivaten. Z. Anorg. Allg. Chem. 1961, 308, 212.Google Scholar
[23]
F. G. A Stone, Robert West, (Eds), Advances in Organometallic Chemistry, Volume 5, Academic Press, Cambridge, Massachusetts, 1967.Google Scholar
[24]
K. Brandenburg, H. Putz, Diamond – Crystal and Molecular Structure Visualization, Crystal Impact GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, 2014.
[25]
S. Parsons, C. Pulham, P. Wood, CCDC 247854: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre, CSD refcode = TMESNH01, 2004.
[26]
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge structural database. Acta Crystallogr. 2016, B72, 171.Google Scholar
[27]
T. Janssen, G. Chapuis, M. de Boissieu, Aperiodic Crystals, Oxford University Press, Oxford, 2007.Google Scholar
[28]
H. T. Stokes, B. J. Campbell, S. van Smaalen, Generation of (3+d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallogr. 2011, A67, 45.Web of ScienceGoogle Scholar
[29]
S. van Smaalen, B. J. Campbell, H. T. Stokes, Equivalence of superspace groups. Acta Crystallogr. 2013, A69, 75.CrossrefGoogle Scholar
[30]
Rigaku Oxford Diffraction, Crysalispro Software system, version 1.171.38.41. Rigaku Corporation, Oxford, UK, 2015.
[31]
A. M. M. Schreurs, X. Xian, L. M. J. Kroon-Batenburg, Eval15: a diffraction data integration method based on ab initio predicted profiles. J. Appl. Crystallogr. 2010, 43, 70.Google Scholar
[32]
Bruker, Sadabs 2008/1, Bruker AXS Inc., Madison, WI, USA, 2008.
[33]
L. Palatinus, The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1.CrossrefGoogle Scholar
[34]
L. Palatinus, G. Chapuis, Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786.Web of ScienceGoogle Scholar
[35]
V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345.Google Scholar
[36]
V. Petricek, V. Eigner, M. Dusek, A. Cejchan, Discontinuous modulation functions and their application for analysis of modulated structures with the computing system Jana2006. Z. Kristallogr. 2016, 231, 301.Google Scholar
[37]
R. S. Rowland, R. Taylor, Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996, 100, 7384.Google Scholar
[38]
G. R. Desiraju. The C–H···O hydrogen bond: Structural implications and supramolecular design. Acc. Chem. Res. 1996, 29, 441.Google Scholar
[39]
Y. Gu, T. Kar, S. Scheiner, Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? J. Am. Chem. Soc. 1999, 121, 9411.Google Scholar
Comments (0)