Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 8 (Aug 2016)

Issues

On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI)

Thomas Schleid
  • University of Stuttgart, Institute for Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ingo Hartenbach
  • Corresponding author
  • University of Stuttgart, Institute for Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-27 | DOI: https://doi.org/10.1515/zkri-2016-1974

Abstract

Halide derivatives of rare-earth metal(III) oxidomolybdates(VI) have been investigated comprehensively over the last decade comprising the halogens fluorine, chlorine, and bromine. Iodide-containing compounds are so far unknown. The simple composition REXMoO4 (RE=rare-earth element, X=halogen) is realized for X=F almost throughout the complete lanthanide series as well as for yttrium. While ytterbium and lutetium do not form any fluoride derivative, for lanthanum, only a fluoride-deprived compound with the formula La3FMo4O16 is realized. Moreover, molybdenum-rich compounds with the formula REXMo2O7 are also known for yttrium and the smaller lanthanoids. For X=Cl the composition REClMoO4 is known for yttrium and the whole lanthanide series, although, four different structure types were identified. Almost the same holds for X=Br, however, only two different structure types are realized in this class of compounds. In the case of halide derivatives of rare-earth metal(III) oxidotungstates(VI) the composition REXWO4 is found for chlorides and bromides only, so far. Due to the similar size of Mo6+ and W6+ cations, the structures found for the tungstates are basically the same as for the molybdates. With the larger lanthanides, the representatives for both chloride and bromide derivates exhibit similar structural motifs as seen in the molybdates, however, the crystal structure cannot be determined reliably. In case of the smaller lanthanoids, the chloride derivatives are isostructural with the respective molybdates, although the existence ranges differ slightly. The same is true for rare-earth metal(III) bromide oxidotungstates(VI).

Keywords: crystal structures; halides; molybdates; rare-earth metals; tungstates

References

  • [1]

    S. Dutta, S. Som, J. Priya, S. K. Sharma, Solid State Sci. 2013, 18, 114.Google Scholar

  • [2]

    S. Sumithra, A. M. Umarji, Solid State Sci. 2006, 8, 1453.Google Scholar

  • [3]

    C. Guzmán-Alfonso, C. Gonzáles-Silgo, J. Gonzáles-Platas, M. E. Torres, A. D. Lozano-Gorrín, N. Sabalisck, V. Sánchez-Fajardo, J. Campo, J. Rodríguez-Carvajal, J. Phys.: Condens. Matter 2011, 23, 325402.Google Scholar

  • [4]

    H. Wiegelmann, B. K. Ponomarev, J. Van Tol, A. G. M. Jansen, P. Wyder, B. S. Red’kin, Ferroelectrics 1996, 183, 195.Google Scholar

  • [5]

    T. Schustereit, Th. Schleid, I. Hartenbach, Z. Naturforsch. 2011, 66b, 763.CrossrefGoogle Scholar

  • [6]

    A. V. Tyulin, V. A. Efremov, V. K. Trunov, Kristallografiya 1984, 29, 692.Google Scholar

  • [7]

    J. A. Alonso, F. Rivillas, M. J. Martinez Lope, V. Pomjakushin, J. Solid State Chem. 2004, 177, 2470.Google Scholar

  • [8]

    L. G. Sillen, K. Lundborg, Z. Anorg. Allg. Chem. 1950, 252, 2.Google Scholar

  • [9]

    V. A. Efremov, A. V. Tyulin, V. K. Trunov, Koord. Khim. 1987, 13, 1276.Google Scholar

  • [10]

    J. S. Xue, M. R. Antonio, L. Soderholm, Chem. Mater. 1995, 7, 333.Google Scholar

  • [11]

    I. R. Evans, J. A. K. Howard, J. S. O. Evans, Chem. Mater. 2005, 17, 4047.Google Scholar

  • [12]

    S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Solid State Ionics 2003, 161, 231.Google Scholar

  • [13]

    E. T. Keve, S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1971, 54, 3185.Google Scholar

  • [14]

    W. Jeitschko, Acta Crystallogr. 1972, B28, 60.Google Scholar

  • [15]

    W. Jeitschko, Acta Crystallogr. 1973, B29, 2074.Google Scholar

  • [16]

    S. C. Abrahams, C. Svensson, J. L. Bernstein, J. Chem. Phys. 1980, 72, 4278.Google Scholar

  • [17]

    V. A. Efremov, B. I. Lazoryak, V. K. Trunov, Kristallografiya 1981, 26, 72.Google Scholar

  • [18]

    K. Boulahya, M. Parras, J. M. Gonzales Calbet, Eur. J. Inorg. Chem. 2005, 2005, 967.Google Scholar

  • [19]

    S. D. Gates, C. Lind, J. Solid State Chem. 2007, 180, 3510.Google Scholar

  • [20]

    I. Hartenbach, Z. Anorg. Allg. Chem. 2008, 634, 2044.Google Scholar

  • [21]

    S. Balamurugan, U. C. Rodewald, T. Harmening, L. van Wüllen, D. Mohr, H. Eckert, R. Pöttgen, Z. Naturforsch. 2010, 65b, 13.Google Scholar

  • [22]

    S. Dorzhieva, I. Chumak, A. Sarapulova, D. Mikhailova, J. Bazarova, H. Ehrenberg, Acta Crystallogr. 2011, C47, 2026.Google Scholar

  • [23]

    S. Laufer, S. Strobel, Th. Schleid, J. Cybinska, A.-V. Mudring, I. Hartenbach, New J. Chem. 2013, 37, 1919.Google Scholar

  • [24]

    B. M. Gatehouse, R. Same, J. Solid State Chem. 1978, 25, 115.Google Scholar

  • [25]

    H. Naruke, T. Yamase, J. Solid State Chem. 2001, 161, 85.Google Scholar

  • [26]

    R. S. Barker, I. R. Evans, J. Solid State Chem. 2006, 179, 1918.Google Scholar

  • [27]

    S. Laufer, D. Rudolph, Th. Schleid, I. Hartenbach, Crystals 2016, in preparation.Google Scholar

  • [28]

    H. Naruke, T. Yamase, Acta Crystallogr. 2002, E58, 62.Google Scholar

  • [29]

    B. van der Wolf, P. Held, P. Becker, Acta Crystallogr. 2009, E65, i59.Google Scholar

  • [30]

    Th. Schleid, C. Dobos-Wolfer, S. Strobel, I. Hartenbach, Z. Kristallogr. 2013, 39, 87.Google Scholar

  • [31]

    H. Naruke, T. Yamase, Inorg. Chem. 2002, 41, 6514.Google Scholar

  • [32]

    G. D. Fallon, B. M. Gatehouse, J. Solid State Chem. 1982, 44, 156.Google Scholar

  • [33]

    V. A. Efremov, N. N. Davydova, L. Z. Gokhman, A. A. Evdokimov, V. K. Trunov, Zh. Neorg. Khim. 1988, 33, 3005.Google Scholar

  • [34]

    V. A. Efremov, N. N. Davydova, V. K. Trunov, Zh. Neorg. Khim. 1988, 33, 3001.Google Scholar

  • [35]

    F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, P. Lacorre, J. Solid State Chem. 2001, 159, 228.Google Scholar

  • [36]

    H. Naruke, T. Yamase, Acta Crystallogr. 2001, E57, 106.Google Scholar

  • [37]

    H. Naruke, T. Yamase, J. Solid State Chem. 2003, 173, 407.Google Scholar

  • [38]

    D. Zhao, F.-F. Li, Y.-M. Yao, C.-A. Huan, E.-X. Zhao, Acta Crystallogr. 2010, E66, i85.Google Scholar

  • [39]

    P. B. Jamieson, S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1969, 50, 86.Google Scholar

  • [40]

    T. Schustereit, S. L. Müller, Th. Schleid, I. Hartenbach, Crystals 2011, 1, 244.Google Scholar

  • [41]

    T. Schustereit, Th. Schleid, I. Hartenbach, Acta Crystallogr. 2013, E69, i7.Google Scholar

  • [42]

    T. Schustereit, Th. Schleid, I. Hartenbach, Z. Kristallogr. 2015, Suppl. 35, 82.Google Scholar

  • [43]

    N. Diot, P. Bernard-Rocheruelle, R. Marchand, Powder Diffr. 2000, 15, 220.Google Scholar

  • [44]

    O. Beaury, M. Faucher, P. Caro, Mater. Res. Bull. 1978, 13, 175.Google Scholar

  • [45]

    W. Xing, P. Rauwel, Hervoches C. H., Z. Li, R. Haugsrud, Solid State Ionics 2014, 261, 87.Google Scholar

  • [46]

    D. J. M. Bevan, J. Drennan, H. J. Rossell, Acta Crystallogr. 1982, B38, 2991.Google Scholar

  • [47]

    M. H. Chambrier, R. M. Ibberson, F. Goutenoire, J. Solid State Chem. 2010, 183, 1297.Google Scholar

  • [48]

    T. M. Polyanskaya, S. V. Borisov, N. V. Belov, Dokl. Akad. Nauk SSSR 1970, 193, 83.Google Scholar

  • [49]

    O. Beaury, M. Faucher, G. Teste de Sagey, Acta Crystallogr. 1981, B37, 1166.Google Scholar

  • [50]

    V. A. Efremov, A. V. Tyulin, V. K. Trunov, Kristallografiya 1984, 29, 673.Google Scholar

  • [51]

    V. A. Efremov, A. V. Tyulin, V. K. Trunov, O. V. Kudin, V. K. Yanovskii, V. I. Voronkova, Kristallografiya 1984, 29, 904.Google Scholar

  • [52]

    A. V. Tyulin, V. A. Efremov, Kristallografiya 1987, 32, 363.Google Scholar

  • [53]

    A. V. Tyulin, V. A. Efremov, Kristallografiya 1987, 32, 371.Google Scholar

  • [54]

    A. V. Tyulin, V. A. Efremov, V. K. Trunov, Kristallografiya 1989, 34, 885.Google Scholar

  • [55]

    Z. Zhang, H. Zhang, C. J. Duan, J. L. Yuan, X. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, J. Alloys Compd. 2008, 466, 258.Google Scholar

  • [56]

    M. H. Chambrier, S. Kodjikan, R. M. Ibberson, F. Goutenoire, J. Solid State Chem. 2009, 182, 209.Google Scholar

  • [57]

    M. Allix, M. H. Chambrier, E. Veron, F. Porcher, M. Suchomel, F. Goutenoire, Cryst. Growth Des. 2011, 11, 5105.Google Scholar

  • [58]

    M. H. Chambrier, A. Le Bail, S. Kodjikan, E. Suard, F. Goutenoire, Inorg. Chem. 2009, 48, 6566.Google Scholar

  • [59]

    T. M. Polyanskaya, S. V. Borisov, N. V. Belov, Kristallografiya 1970, 15, 1135.Google Scholar

  • [60]

    S. V. Borisov, R. F. Klevtsova, Kristallografiya 1970, 15, 38.Google Scholar

  • [61]

    P. Held, P. Becker, Acta Crystallogr. 2008, E64, i29.Google Scholar

  • [62]

    Y. Laligant, A. Bail, F. Goutenoire, J. Solid State Chem. 2001, 159, 223.Google Scholar

  • [63]

    C. Grenthe, A. Guagliardi, M. Sundberg, P. E. Werner, Acta Crystallogr. 2001, B57, 13.Google Scholar

  • [64]

    R. S. Barker, I. R. Evans, Acta Crystallogr. 2008, B64, 708.Google Scholar

  • [65]

    D. H. Templeton, A. Zalkin, Acta Crystallogr. 1963, 16, 762.Google Scholar

  • [66]

    S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1966, 45, 2745.Google Scholar

  • [67]

    M. Gaertner, D. Abeln, A. Pring, M. Wilde, A. Reller, J. Solid State Chem. 1994, 111, 128.Google Scholar

  • [68]

    T. Gressling, H. Müller-Buschbaum, Z. Naturforsch. 1995, 50b, 1513.Google Scholar

  • [69]

    J. S. O. Evans, T. A. Mary, A. W. Sleight, J. Solid State Chem. 1998, 137, 148.Google Scholar

  • [70]

    D. A. Woodcock, P. Lightfoot, C. Ritter, J. Solid State Chem. 2000, 149, 92.Google Scholar

  • [71]

    R. Shen, C. Wang, T. M. Wang, C. Dong, X. L. Chen, J. K. Liang, Rare Met. 2003, 22, 49.Google Scholar

  • [72]

    M. Weil, B. Stoeger, L. Aleksandrov, Acta Crystallogr. 2009, E65, i45.Google Scholar

  • [73]

    T. Varga, J. F. Mitchell, J. Wang, L. G. Arnold, B. H. Toby, C. D. Malliakas, J. Solid State Chem. 2010, 183, 1567.Google Scholar

  • [74]

    L. H. Brixner, H.-Y. Chen, C. M. Foris, J. Solid State Chem. 1982, 45, 80.Google Scholar

  • [75]

    L. H. Brixner, H.-Y. Chen, C. M. Foris, Mater. Res. Bull. 1982, 17, 1545.Google Scholar

  • [76]

    L. H. Brixner, H.-Y. Chen, C. M. Foris, J. Solid State Chem. 1982, 44, 99.Google Scholar

  • [77]

    J. B. Parise, L. H. Brixner, E. Prince, Acta Crystallogr. 1983, C39, 1326.Google Scholar

  • [78]

    T. M. Polyanskaya, S. V. Borisov, N. V. Belov, Dokl. Akad. Nauk. SSSR 1969, 187, 1043.Google Scholar

  • [79]

    G. Blasse, Struct. Bond. 1980, 42, 1.Google Scholar

  • [80]

    G. Blasse, B. C. Grabmeier, Luminescent Materials, Springer-Verlag, Berlin, Heidelberg, 1994.Google Scholar

  • [81]

    G. J. Janz, Molten Salts Handbook, Academic Press, New York, London, 1967.Google Scholar

  • [82]

    B. M. Gatehouse, P. Leverett, J. Chem. Soc. A 1969, 1969, 849.Google Scholar

  • [83]

    C. J. Clark, D. Hall, Acta Crystallogr. 1976, B32, 1545.Google Scholar

  • [84]

    T. Schustereit, Th. Schleid, I. Hartenbach, Eur. J. Inorg. Chem. 2014, 2014, 5145.Google Scholar

  • [85]

    T. Schustereit, Doctoral thesis, University of Stuttgart, 2015.Google Scholar

  • [86]

    I. Hartenbach, S. Strobel, Th. Schleid, B. Sarkar, W. Kaim, P. Nockemann, K. Binnemans, P. K. Dorhout, Eur. J. Inorg. Chem. 2010, 2010, 1626.Google Scholar

  • [87]

    I. Hartenbach, H. A. Höppe, K. Kazmierczak, Th. Schleid, Dalton Trans. 2014, 43, 14016.Google Scholar

  • [88]

    S. L. Müller, Exam thesis, University of Stuttgart, 2012.Google Scholar

  • [89]

    S. L. Müller, Th. Schleid, I. Hartenbach, Z. Naturforsch. 2016, in preparation.Google Scholar

  • [90]

    Th. Schleid, S. Strobel, P. K. Dorhout, P. Nockemann, K. Binnemans, I. Hartenbach, Inorg. Chem. 2008, 47, 3728.Google Scholar

  • [91]

    I. Hartenbach, S. Strobel, P. K. Dorhout, Th. Schleid, J. Solid State Chem. 2008, 181, 2828.Google Scholar

  • [92]

    W. Hofmann, W. Jaenicke, Naturwissenschaften 1935, 31, 851.Google Scholar

  • [93]

    I. Hartenbach, Terrae Rarae 2009 2010, 1, 70.Google Scholar

  • [94]

    G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Publishers, New York, 1969.Google Scholar

  • [95]

    P. Dorenbos, J. Lumin. 2007, 122–123, 315.Google Scholar

  • [96]

    I. Hartenbach, Th. Schleid, S. Strobel, P. K. Dorhout, Z. Anorg. Allg. Chem. 2010, 636, 1183.Google Scholar

  • [97]

    R. G. Dickinson, J. B. Friauf, J. Am. Chem. Soc. 1924, 46, 2457.Google Scholar

  • [98]

    I. Hartenbach, Th. Schleid, Z. Anorg. Allg. Chem. 2009, 635, 1904.Google Scholar

  • [99]

    I. Hartenbach, S. Strobel, Th. Schleid, K. W. Krämer, P. K. Dorhout, Z. Anorg. Allg. Chem. 2009, 635, 966.Google Scholar

  • [100]

    L. Pauling, J. L. Hoard, Z. Kristallogr. 1930, 74, 546.Google Scholar

  • [101]

    T. Schustereit, Th. Schleid, I. Hartenbach, Z. Anorg. Allg. Chem. 2011, 637, 1159.Google Scholar

  • [102]

    I. Hartenbach, H. Henning, Th. Schleid, T. Schustereit, S. Strobel, Z. Anorg. Allg. Chem. 2013, 639, 347.Google Scholar

  • [103]

    R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Google Scholar

  • [104]

    T. Schustereit, H. Henning, Th. Schleid, I. Hartenbach, Z. Naturforsch. 2013, 68b, 616.Google Scholar

  • [105]

    H. Henning, T. Schustereit, Th. Schleid, I. Hartenbach, Z. Kristallogr. 2012, Suppl. 32, 95.Google Scholar

  • [106]

    G. Blasse, G. Bokkers, B. J. Dirksen, L. H. Brixner, J. Solid State Chem. 1983, 46, 215.Google Scholar

  • [107]

    T. Schustereit, Th. Schleid, H. A. Höppe, K. Kazmierczak, I. Hartenbach, J. Solid State Chem. 2015, 226, 299.Google Scholar

  • [108]

    G. Blasse, L. H. Brixner, J. Solid State Chem. 1983, 47, 368.Google Scholar

  • [109]

    I. Hartenbach, F. Ledderboge, Th. Schleid, Z. Kristallogr. 2009, Suppl. 29, 5.Google Scholar

  • [110]

    K. V. Dorn, Th. Schleid, B. Blaschkowski, K. Förg, H. A. Höppe, I. Hartenbach, Eur. J. Inorg. Chem. 2016, submitted for publication.Google Scholar

  • [111]

    K. V. Dorn, Th. Schleid, I. Hartenbach, Z. Anorg. Allg. Chem. 2016, in press.Google Scholar

  • [112]

    U. Schaffrath, R. Gruehn, J. Less-Common Met. 1988, 137, 61.Google Scholar

  • [113]

    U. Schaffrath, R. Gruehn, Naturwissenschaften 1987, 74, 342.Google Scholar

  • [114]

    O. Janka, Th. Schleid, Solid State Sci. 2009, 11, 1992.Google Scholar

  • [115]

    G. Blasse, B. J. Dirksen, L. H. Brixner, J. Solid State Chem. 1982, 44, 162.Google Scholar

  • [116]

    N. N. Lobanov, I. S. Popova, N. U. Venskovskii, Russ. J. Inorg. Chem. 2006, 51, 960.Google Scholar

  • [117]

    T. Schustereit, Th. Schleid, I. Hartenbach, Solid State Sci. 2015, 48, 218.Google Scholar

About the article

Received: 2016-06-10

Accepted: 2016-07-01

Published Online: 2016-07-27

Published in Print: 2016-08-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1974.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in