Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 9 (Sep 2016)

Issues

Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes 154Sm and 153Eu

Holger Kohlmann
  • Corresponding author
  • Institute of Inorganic Chemistry, University Leipzig, Johannisallee 29, 04103 Leipzig, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christina Hein
  • Inorganic Solid State Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ralf Kautenburger
  • Inorganic Solid State Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas C. Hansen / Clemens Ritter / Stephen Doyle
  • Karlsruhe Institute of Technology, Institute for Synchrotron Radiation (ISS), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/zkri-2016-1984

Abstract

The crystal structures of monoclinic samarium and cubic europium sesquioxide, Sm2O3 and Eu2O3, were reinvestigated by powder diffraction methods (laboratory X-ray, synchrotron, neutron). Rietveld analysis yields more precise structural parameters than previously known, especially for oxygen atoms. Interatomic distances d(Sm–O) in Sm2O3 range from 226.3(4) to 275.9(2) pm [average 241.6(3) pm] for the monoclinic B type Sm2O3 [space group C2/m, a = 1418.04(3) pm, b = 362.660(7) pm, c = 885.48(2) pm, β = 100.028(1)°], d(Eu–O) in Eu2O3 from 229.9(2) to 238.8(2) pm for the cubic bixbyite (C) type [space group Ia3̅, a = 1086.87(1) pm]. Neutron diffraction at 50 K and 2 K did not show any sign for magnetic ordering in Sm2O3. Isotopically enriched 154Sm2O3 and 153Eu2O3 were used for the neutron diffraction work because of the enormous absorption cross section of the natural isotopic mixtures for thermal neutrons. The isotopic purity was determined by inductively coupled plasma – mass spectrometry to be 98.9% for 154Sm and 99.8% for 153Eu. Advanced analysis of the neutron diffraction data suggest that the bound coherent scattering lengths of 154Sm and 153Eu need to be revised. We tentatively propose bc(154Sm) = 8.97(6) fm and bc(153Eu) = 8.85(3) fm for a neutron wavelength of 186.6 pm to be better values for these isotopes, showing up to 8% deviation from accepted literature values. It is shown that inaccurate scattering lengths may result in severe problems in crystal structure refinements causing erroneous structural details such as occupation parameters, which might be critically linked to physical properties like superconductivity in multinary oxides.

Keywords: bixbyite type; europium; neutron diffraction; powder diffraction; samarium; scattering length

References

  • [1]

    K. A. Gschneidner Jr., L. Eyring (Eds), Handbook on the Physics and Chemistry of Rare Earths, Elsevier Science, Amsterdam, 1984.Google Scholar

  • [2]

    M. Zinkevich, Prog. Mater. Sci. 2007, 52, 597.Google Scholar

  • [3]

    G.-y. Adachi, N. Imanaka, Chem. Rev. 1998, 98, 1479.Google Scholar

  • [4]

    G. Brauer, R. Müller, Z. Anorg. Allg. Chem. 1963, 321, 234.Google Scholar

  • [5]

    A. Quesada, A. del Campo, J. F. Fernández, Mater. Lett. 2015, 157, 77.Google Scholar

  • [6]

    T. Schleid, G. Meyer, J. Alloys Compd. 1989, 149, 73.Google Scholar

  • [7]

    H. L. Yakel, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, 35, 564.Google Scholar

  • [8]

    Z. K. Heiba, Y. Akin, W. Sigmund, Y. S. Hascicek, J. Appl. Crystallogr. 2003, 36, 1411.Google Scholar

  • [9]

    K. Yvon, H. Kohlmann, B. Bertheville, Chimia 2001, 55, 505.Google Scholar

  • [10]

    H. Kohlmann, Eur. J. Inorg. Chem. 2010, 2582.Google Scholar

  • [11]

    H. Kohlmann, R. O. Moyer Jr., T. Hansen, K. Yvon, J. Solid State Chem. 2003, 174, 35.Google Scholar

  • [12]

    H. Kohlmann, F. Gingl, T. Hansen, K. Yvon, Angew. Chem., Int. Ed. 1999, 38, 2029.Google Scholar

  • [13]

    H. Kohlmann, K. Yvon, Y. Wang, J. Alloys Compd. 2005, 393, 11.Google Scholar

  • [14]

    H. Kohlmann, B. Bertheville, T. Hansen, K. Yvon, J. Alloys Compd. 2001, 322, 59.Google Scholar

  • [15]

    H. Kohlmann, F. Werner, K. Yvon, G. Hilscher, M. Reissner, G. J. Cuello, Chem.–Eur. J. 2007, 13, 4178.Google Scholar

  • [16]

    W. C. Koehler, R. M. Moon, J. W. Cable, H. R. Child, AIP Conf. Proc. 1972, 5, 1434.Google Scholar

  • [17]

    E. Holland-Moritz, E. Braun, B. Roden, B. Perscheid, E. V. Sampathkumaran, W. Langel, Phys. Rev. B 1987, 35, 3122.Google Scholar

  • [18]

    S. Quezel, P. Burlet, A. Dinia, J. Rossat-Mignod, R. Horyn, O. Pena, M. Sergent, Phys. B (Amsterdam, Neth.) 1989, 156–157, 780.Google Scholar

  • [19]

    I. N. Goncharenko, I. Mirebeau, A. Ochiai, Hyperfine Interact. 2000, 128, 225.Google Scholar

  • [20]

    P. F. Henry, M. T. Weller, C. C. Wilson, Chem. Mater. 2002, 14, 4104.Google Scholar

  • [21]

    B. J. Kennedy, M. Avdeev, Solid State Sci. 2011, 13, 1701.Google Scholar

  • [22]

    K. L. A. Belener, H. Kohlmann, J. Magn. Magn. Mater. 2014, 370, 134.Google Scholar

  • [23]

    H. Bärnighausen, Acta Crystallogr. 1965, 19, 1047.Google Scholar

  • [24]

    R. C. Rau, W. J. Glover Jr., J. Am. Ceram. Soc. 1964, 47, 382.Google Scholar

  • [25]

    V. F. Sears, Neutron News 1992, 3, 26.Google Scholar

  • [26]

    J. Rodriguez-Carvajal, Z. Phys. B: Condens. Matter 1993, 192, 55.Google Scholar

  • [27]

    J. Rodriguez-Carvajal, FULLPROF version 5.30, Institut Laue-Langevin (ILL), 2012.Google Scholar

  • [28]

    R. F. Balabaeva, I. A. Vasil’eva, I. S. Sukhushina, A. N. Rybnikova, Russ. J. Inorg. Chem. 2000, 74, 1202.Google Scholar

  • [29]

    V. F. Sears, Thermal-Neutron Scattering Lengths and Cross Sections for Condensed-Matter Research, Chalk River Nuclear Laboratories, Chalk River, Ontario, AECL-8490, 1984.Google Scholar

  • [30]

    J. E. Lynn, P. A. Seeger, At. Data Nucl. Data Tables 1990, 44, 191.Google Scholar

  • [31]

    L. Koester, H. Rauch, E. Seymann, At. Data Nucl. Data Tables 1991, 49, 65.Google Scholar

  • [32]

    H. Rauch, S. A. Werner, Neutron Interferometry, 2nd revised edition, Oxford University Press, Oxford, 2015.Google Scholar

  • [33]

    W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. A. Tutmaher, J. C. Leiner, M. D. Lumsden, C. M. Lavelle, X. P. Wang, C. Hoffmann, M. A. Siegler, N. Haldolaarachchige, D. P. Young, T. M. McQueen, Sci. Rep. 2016, 6, 20860.Google Scholar

  • [34]

    V. A. Trounov, T. Yu. Kaganovich, A. I. Kurbakov, A. V. Matveev, A. E. Sovestnov, A. W. Hewat, P. Fischer, O. Antson, R. M. A. Maayouf, Phys. C (Amsterdam, Neth.) 1992, 194, 415.Google Scholar

  • [35]

    M. Guillaume, P. Allenspach, W. Henggeler, J. Mesot, B. Roessli, U. Staub, P. Fischer, A. Furrer, V. Trounov, J. Phys.: Condens. Matter 1994, 6, 7963.Google Scholar

  • [36]

    M. A. L. Field, C. S. Knee, M. T. Weller, J. Solid State Chem. 2002, 167, 237.Google Scholar

About the article

Received: 2016-06-30

Accepted: 2016-07-22

Published Online: 2016-08-26

Published in Print: 2016-09-01


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: Ko1803/2-1

Award identifier / Grant number: Ko1803/7-1

We acknowledge the Institut-Laue Langevin and the Institute for Synchrotron Radiation (ISS) for provision of beamtime at the powder diffractometers D20 and PDIFF, respectively. This work was supported by the Deutsche Forschungsgemeinschaft (grants Ko1803/2-1 and Ko1803/7-1).


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1984.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in