Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3

Issues

A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

Nils Becker
  • Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
  • Jülich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University, D-52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Reimann
  • Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstraße 4, D-53115 Bonn, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dominik Weber
  • Technische Universität Berlin, Fakultät II, Institut für Chemie, Sekretariat C 2, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tobias Lüdtke
  • Technische Universität Berlin, Fakultät II, Institut für Chemie, Sekretariat C 2, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Lerch
  • Technische Universität Berlin, Fakultät II, Institut für Chemie, Sekretariat C 2, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Bredow
  • Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstraße 4, D-53115 Bonn, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard Dronskowski
  • Corresponding author
  • Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
  • Jülich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University, D-52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/zkri-2016-1960

Abstract

The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo2O3 and over 60 GPa for W2O3.

This article offers supplementary material which is provided at the end of the article.

Keywords: DFT; high-pressure; molybdenum; sesquioxide; tungsten

References

  • [1]

    L. S. Palatnik, O. A. Obol’yaninova, M. N. Naboka, N. T. Gladkikh, New tungsten oxide modifications. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 1973, 9, 801.Google Scholar

  • [2]

    B. G. Eristavi, E. M. Diasamidze, R. N. Dekanosidze, N. I. Maisuradze, E. R. Kutelia, A. V. Sichinava, N. E. Menabde, Structural transformations of oxygen implanted surfaces of refractory metals (Mo, W, Nb). Acta Metall. Mater. 1991, 39, 1703.CrossrefGoogle Scholar

  • [3]

    C. L. Dezelah, O. M. El-Kadri, I. M. Szilágyi, J. M. Campbell, K. Arstila, L. Niinistö, C. H. Winter, Atomic layer deposition of tungsten(III) oxide thin films from W2(NMe2)6 and water: precursor-based control of oxidation state in the thin film material. J. Am. Chem. Soc. 2006, 128, 9638.CrossrefGoogle Scholar

  • [4]

    D. Weber, A. Stork, S. Nakhal, C. Wessel, C. Reimann, W. Hermes, A. Müller, T. Ressler, R. Pöttgen, T. Bredow, R. Dronskowski, M. Lerch, Bixbyite-Type V2O3 – a metastable polymorph of vanadium sesquioxide. Inorg. Chem. 2011, 50, 6762.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15.CrossrefGoogle Scholar

  • [6]

    P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.CrossrefGoogle Scholar

  • [7]

    J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.CrossrefGoogle Scholar

  • [8]

    J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossrefGoogle Scholar

  • [9]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J Comput. Chem. 2011, 32, 1456.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809.CrossrefGoogle Scholar

  • [12]

    A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.Web of ScienceCrossrefGoogle Scholar

  • [13]

    R. P. Stoffel, C. Wessel, M.-W. Lumey, R. Dronskowski, Ab initio thermochemistry of solid-state materials. Angew. Chem. Int. Ed. 2010, 49, 5242.CrossrefGoogle Scholar

  • [14]

    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014, 114, 1287.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    C. Wessel, C. Reimann, A. Müller, D. Weber, M. Lerch, T. Ressler, T. Bredow, R. Dronskowski, Electronic structure and thermodynamics of V2O3 polymorphs. J. Comput. Chem. 2012, 33, 2102.Web of ScienceCrossrefGoogle Scholar

  • [16]

    H. Wolff, T. Bredow, M. Lerch, H. Schilling, E. Irran, A. Stork, R. Dronskowski, A first-principles study of the electronic and structural properties of γ-TaON. J. Phys. Chem. A 2007, 111, 2745.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    T. Bredow, A. R. Gerson, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B 2000, 61, 5194.CrossrefGoogle Scholar

  • [18]

    F. Cora, A. Patel, N. M. Harrison, C. Roetti, C. Richard A. Catlow, An ab initio Hartree-Fock study of α-MoO3. J. Mater. Chem. 1997, 7, 959.CrossrefGoogle Scholar

  • [19]

    F. Corà, A. Patel, N. M. Harrison, R. Dovesi, C. R. A. Catlow, An ab initio Hartree–Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. J. Am. Chem. Soc. 1996, 118, 12174.CrossrefGoogle Scholar

  • [20]

    A. M. Ferrari, C. Pisani, An ab initio periodic study of NiO supported at the Pd(100) surface. Part 1: the perfect epitaxial monolayer. J. Phys. Chem. B 2006, 110, 7909.CrossrefGoogle Scholar

  • [21]

    E. Newnham, Y. M de. Haan, Refinement of the Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Z. Kristallogr. 1962, 117, 235.CrossrefGoogle Scholar

  • [22]

    P. D. Dernier, M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys. Rev. B 1970, 2, 3771.CrossrefGoogle Scholar

  • [23]

    J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium oxide. Acta Crystallogr., Sect. C 1996, 52, 1336.CrossrefGoogle Scholar

  • [24]

    R. D. Shannon, C. T. Prewitt, Synthesis and structure of a new high-pressure form of Rh2O3. J. Solid State Chem. 1970, 2, 134.CrossrefGoogle Scholar

  • [25]

    D. T. Cromer, The crystal structure of monoclinic Sm2O2. J. Phys. Chem. 1957, 61, 753.CrossrefGoogle Scholar

  • [26]

    C. Svensson, The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallogr., Sect. B 1974, 30, 458.CrossrefGoogle Scholar

  • [27]

    P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, H. Paulus, Gold(III) oxide. Acta Crystallogr., Sect. B 1979, 35, 1435.CrossrefGoogle Scholar

  • [28]

    E. Tronc, C. Chanéac, J. P. Jolivet, Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 1998, 139, 93.CrossrefGoogle Scholar

  • [29]

    L. Smrčok, V. Langer, M. Halvarsson, S. Ruppi, A new Rietveld refinement of κ-Al2O3. Z. Kristallogr. 2001, 216, 409.Google Scholar

  • [30]

    A. Kyono, M. Kimata, Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral. 2004, 89, 932.CrossrefGoogle Scholar

  • [31]

    S. Geller, Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys. 1956, 24, 1236.CrossrefGoogle Scholar

  • [32]

    W. C. Koehler, E. O. Wollan, Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallogr. 1953, 6, 741.CrossrefGoogle Scholar

  • [33]

    S. Nakhal, W. Hermes, T. Ressler, R. Pöttgen, M. Lerch, Synthesis, crystal structure and magnetic properties of bixbyite-type vanadium oxide nitrides. Z. Naturforsch. B 2009, 64, 281.Google Scholar

  • [34]

    B. Stehlík, P. Weidenthaler, J. Vlach: Kristallstruktur von Silber(III)-Oxyd. Collect. Czech. Chem. Commun. 1959, 24, 1581.CrossrefGoogle Scholar

  • [35]

    C. Wessel, R. Dronskowski, A first-principles study on chromium sesquioxide, Cr2O3. J. Solid State Chem. 2013, 199, 149.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-05-25

Accepted: 2016-08-04

Published Online: 2016-08-26

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 69–75, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1960.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in