Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 26, 2016

A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

  • Nils Becker , Christoph Reimann , Dominik Weber , Tobias Lüdtke , Martin Lerch , Thomas Bredow and Richard Dronskowski EMAIL logo

Abstract

The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo2O3 and over 60 GPa for W2O3.

Acknowledgments

This work was supported by the DFG within the priority program SPP 1415. We thank the computing center at RWTH Aachen University for providing large amounts of CPU time.

References

[1] L. S. Palatnik, O. A. Obol’yaninova, M. N. Naboka, N. T. Gladkikh, New tungsten oxide modifications. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy1973, 9, 801.Search in Google Scholar

[2] B. G. Eristavi, E. M. Diasamidze, R. N. Dekanosidze, N. I. Maisuradze, E. R. Kutelia, A. V. Sichinava, N. E. Menabde, Structural transformations of oxygen implanted surfaces of refractory metals (Mo, W, Nb). Acta Metall. Mater.1991, 39, 1703.10.1016/0956-7151(91)90259-4Search in Google Scholar

[3] C. L. Dezelah, O. M. El-Kadri, I. M. Szilágyi, J. M. Campbell, K. Arstila, L. Niinistö, C. H. Winter, Atomic layer deposition of tungsten(III) oxide thin films from W2(NMe2)6 and water: precursor-based control of oxidation state in the thin film material. J. Am. Chem. Soc.2006, 128, 9638.10.1021/ja063272wSearch in Google Scholar

[4] D. Weber, A. Stork, S. Nakhal, C. Wessel, C. Reimann, W. Hermes, A. Müller, T. Ressler, R. Pöttgen, T. Bredow, R. Dronskowski, M. Lerch, Bixbyite-Type V2O3 – a metastable polymorph of vanadium sesquioxide. Inorg. Chem.2011, 50, 6762.10.1021/ic200799nSearch in Google Scholar

[5] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15.10.1016/0927-0256(96)00008-0Search in Google Scholar

[6] P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B1994, 50, 17953.10.1103/PhysRevB.50.17953Search in Google Scholar

[7] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett.1997, 78, 1396.10.1103/PhysRevLett.78.1396Search in Google Scholar

[8] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[9] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.2010, 132, 154104.10.1063/1.3382344Search in Google Scholar PubMed

[10] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J Comput. Chem.2011, 32, 1456.10.1002/jcc.21759Search in Google Scholar PubMed

[11] F. Birch, Finite elastic strain of cubic crystals. Phys. Rev.1947, 71, 809.10.1103/PhysRev.71.809Search in Google Scholar

[12] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B2008, 78, 134106.10.1103/PhysRevB.78.134106Search in Google Scholar

[13] R. P. Stoffel, C. Wessel, M.-W. Lumey, R. Dronskowski, Ab initio thermochemistry of solid-state materials. Angew. Chem. Int. Ed.2010, 49, 5242.10.1002/anie.200906780Search in Google Scholar PubMed

[14] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem.2014, 114, 1287.10.1002/qua.24658Search in Google Scholar

[15] C. Wessel, C. Reimann, A. Müller, D. Weber, M. Lerch, T. Ressler, T. Bredow, R. Dronskowski, Electronic structure and thermodynamics of V2O3 polymorphs. J. Comput. Chem.2012, 33, 2102.10.1002/jcc.23046Search in Google Scholar PubMed

[16] H. Wolff, T. Bredow, M. Lerch, H. Schilling, E. Irran, A. Stork, R. Dronskowski, A first-principles study of the electronic and structural properties of γ-TaON. J. Phys. Chem. A2007, 111, 2745.10.1021/jp0687246Search in Google Scholar PubMed

[17] T. Bredow, A. R. Gerson, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B2000, 61, 5194.10.1103/PhysRevB.61.5194Search in Google Scholar

[18] F. Cora, A. Patel, N. M. Harrison, C. Roetti, C. Richard A. Catlow, An ab initio Hartree-Fock study of α-MoO3. J. Mater. Chem.1997, 7, 959.10.1039/a607439aSearch in Google Scholar

[19] F. Corà, A. Patel, N. M. Harrison, R. Dovesi, C. R. A. Catlow, An ab initio Hartree–Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. J. Am. Chem. Soc.1996, 118, 12174.10.1021/ja961514uSearch in Google Scholar

[20] A. M. Ferrari, C. Pisani, An ab initio periodic study of NiO supported at the Pd(100) surface. Part 1: the perfect epitaxial monolayer. J. Phys. Chem. B2006, 110, 7909.10.1021/jp057401rSearch in Google Scholar PubMed

[21] E. Newnham, Y. M de. Haan, Refinement of the Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Z. Kristallogr.1962, 117, 235.10.1524/zkri.1962.117.16.235Search in Google Scholar

[22] P. D. Dernier, M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys. Rev. B1970, 2, 3771.10.1103/PhysRevB.2.3771Search in Google Scholar

[23] J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium oxide. Acta Crystallogr., Sect. C1996, 52, 1336.10.1107/S0108270195016404Search in Google Scholar

[24] R. D. Shannon, C. T. Prewitt, Synthesis and structure of a new high-pressure form of Rh2O3. J. Solid State Chem.1970, 2, 134.10.1016/0022-4596(70)90041-1Search in Google Scholar

[25] D. T. Cromer, The crystal structure of monoclinic Sm2O2. J. Phys. Chem.1957, 61, 753.10.1021/j150552a011Search in Google Scholar

[26] C. Svensson, The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallogr., Sect. B1974, 30, 458.10.1107/S0567740874002986Search in Google Scholar

[27] P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, H. Paulus, Gold(III) oxide. Acta Crystallogr., Sect. B1979, 35, 1435.10.1107/S0567740879006622Search in Google Scholar

[28] E. Tronc, C. Chanéac, J. P. Jolivet, Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem.1998, 139, 93.10.1006/jssc.1998.7817Search in Google Scholar

[29] L. Smrčok, V. Langer, M. Halvarsson, S. Ruppi, A new Rietveld refinement of κ-Al2O3. Z. Kristallogr.2001, 216, 409.10.1524/zkri.216.7.409.20361Search in Google Scholar

[30] A. Kyono, M. Kimata, Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral.2004, 89, 932.10.2138/am-2004-0702Search in Google Scholar

[31] S. Geller, Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys.1956, 24, 1236.10.1063/1.1742746Search in Google Scholar

[32] W. C. Koehler, E. O. Wollan, Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallogr.1953, 6, 741.10.1107/S0365110X53002076Search in Google Scholar

[33] S. Nakhal, W. Hermes, T. Ressler, R. Pöttgen, M. Lerch, Synthesis, crystal structure and magnetic properties of bixbyite-type vanadium oxide nitrides. Z. Naturforsch. B2009, 64, 281.10.1515/znb-2009-0305Search in Google Scholar

[34] B. Stehlík, P. Weidenthaler, J. Vlach: Kristallstruktur von Silber(III)-Oxyd. Collect. Czech. Chem. Commun.1959, 24, 1581.10.1135/cccc19591581Search in Google Scholar

[35] C. Wessel, R. Dronskowski, A first-principles study on chromium sesquioxide, Cr2O3. J. Solid State Chem.2013, 199, 149.10.1016/j.jssc.2012.12.019Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2016-1960) offers supplementary material, available to authorized users.


Received: 2016-5-25
Accepted: 2016-8-4
Published Online: 2016-8-26
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1960/html
Scroll to top button