Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)


Structure and ion dynamics of mechanosynthesized oxides and fluorides

Access to nanocrystalline ceramics via high-energy ball-milling – a short review

Martin Wilkening
  • Corresponding author
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
  • Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andre Düvel
  • Institute of Physical Chemistry and Electrochemistry, Zentrum für Festkörperchemie und Neue Materialien (ZFM), Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Preishuber-Pflügl
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klebson da Silva
  • Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig, Germany
  • Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3-3a, D-30167 Hannover, Germany
  • Department of Physics of Materials, State University of Maringá, Av. Colombo 5790, 87020900 Maringá, Brazil
  • Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Breuer
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Šepelák
  • Corresponding author
  • Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Heitjans
  • Corresponding author
  • Institute of Physical Chemistry and Electrochemistry, Zentrum für Festkörperchemie und Neue Materialien (ZFM), Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-22 | DOI: https://doi.org/10.1515/zkri-2016-1963


In many cases, limitations in conventional synthesis routes hamper the accessibility to materials with properties that have been predicted by theory. For instance, metastable compounds with local non-equilibrium structures can hardly be accessed by solid-state preparation techniques often requiring high synthesis temperatures. Also other ways of preparation lead to the thermodynamically stable rather than metastable products. Fortunately, such hurdles can be overcome by mechanochemical synthesis. Mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis of not only new, metastable compounds but also of nanocrystalline materials with unusual or enhanced properties such as ion transport. In this short review we report about local structures and ion transport of oxides and fluorides mechanochemically prepared by high-energy ball-milling.

Keywords: ball milling; conductivity; nanocrystalline ceramics; NMR; non-equilibrium phases


  • [1]

    S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413.Google Scholar

  • [2]

    P. Baláž, M. Achimovicova, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571.Google Scholar

  • [3]

    V. Šepelák, A. Düvel, M. Wilkening, K. D. Becker, P. Heitjans, Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42, 7507.Google Scholar

  • [4]

    F. Preishuber-Pflügl, M. Wilkening, Mechanochemically synthesized fluorides: local structures and ion transport. Dalton. Trans. 2016, 45, 8675.Google Scholar

  • [5]

    P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys.: Condens. Matter. 2003, 15, R1257.Google Scholar

  • [6]

    S. Indris, D. Bork, P. Heitjans, Nanocrystalline oxide ceramics prepared by high-energy ball milling. J. Mater. Synth. Process. 2000, 8, 245.Google Scholar

  • [7]

    M. Wilkening, V. Epp, A. Feldhoff, P. Heitjans, Tuning the Li diffusivity of poor ionic conductors by mechanical treatment: high Li conductivity of strongly defective LiTaO3 nanoparticles. J. Phys. Chem. C 2008, 112, 9291.Google Scholar

  • [8]

    P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. – Spec. Top. 2008, 16,1 97.Google Scholar

  • [9]

    V. Epp, M. Wilkening, Motion of Li+ in nanoengineered LiBH4 and LiBH4:Al2O3 comparison with the microcrystalline form. ChemPhysChem 2013, 14, 3706.Google Scholar

  • [10]

    A. Düvel, J. Bednarcik, V. Šepelák, P. Heitjans, Mechanosynthesis of the fast fluoride ion conductor Ba1–xLaxF2+x: from the fluorite to the tysonite structure. J. Phys. Chem. C 2014, 118, 7117.Google Scholar

  • [11]

    G. Scholz, S. Breitfeld, T. Krahl, A. Düvel, P. Heitjans, E. Kemnitz, Mechanochemical synthesis of MgF2 – MF2 composite systems (M=Ca, Sr, Ba). Solid State Sci. 2015, 50, 32.Google Scholar

  • [12]

    S. Kipp, V. Šepelák, K. D. Becker, Mechanochemistry. Chem. unserer Zeit 2005, 39, 384.Google Scholar

  • [13]

    V. Šepelák, I. Bergmann, S. Kipp, K. D. Becker, Nanocrystalline ferrites prepared by mechanical activation and mechanosynthesis. Z. Anorg. Allg. Chem. 2005, 631, 993.Google Scholar

  • [14]

    A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Mixed alkaline-earth effect in the metastable anion conductor Ba1–xCaxF2 (0 ≤ x ≤ 1): correlating long-range ion transport with local structures revealed by ultrafast 19F MAS NMR. J. Phys. Chem. C 2011, 115, 23784.Google Scholar

  • [15]

    B. Ruprecht, M. Wilkening, A. Feldhoff, S. Steuernagel, P. Heitjans, High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys. Chem. Chem. Phys. 2009, 11, 3071.Google Scholar

  • [16]

    B. Ruprecht, M. Wilkening, S. Steuernagel, P. Heitjans, Anion diffusivity in highly conductive nanocrystalline BaF2:CaF2 composites prepared by high-energy ball milling. J. Mater. Chem. 2008, 18, 5412.Google Scholar

  • [17]

    F. Preishuber-Pflügl, P. Bottke, V. Pregartner, B. Bitschnau, M. Wilkening, Correlated fluorine diffusion and ionic conduction in the nanocrystalline F- solid electrolyte Ba0.6La0.4F2.4 - 19F T NMR relaxation vs. conductivity measurements. Phys. Chem. Chem. Phys. 2014, 16, 9580.Google Scholar

  • [18]

    F. Preishuber-Pflügl, V. Epp, S. Nakhal, M. Lerch, M. Wilkening, Defect-enhanced F- ion conductivity in layer-structured nanocrystalline BaSnF4 prepared by high-energy ball milling combined with soft annealing. Phys. Status Solidi C 2015, 12, 10.Google Scholar

  • [19]

    F. Preishuber-Pflügl, M. Wilkening, Evidence of low dimensional ion transport in mechanosynthesized nanocrystalline BaMgF4. Dalton. Trans. 2014, 43, 9901.Google Scholar

  • [20]

    D. Wohlmuth, V. Epp, M. Wilkening, Fast Li ion dynamics in the solid electrolyte Li7P3S11 as probed by 6,7Li NMR spin-lattice relaxation. ChemPhysChem 2015, 16, 2582.Google Scholar

  • [21]

    C. Rongeat, M. A. Reddy, R. Witter, M. Fichtner, Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J. Phys. Chem. C 2013, 117, 4943.Google Scholar

  • [22]

    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 2001, 46, 1.Google Scholar

  • [23]

    F. P. Bowden, D. Tabor, The friction and lubrication of solids, Clarendon Press, Oxford, 1958.Google Scholar

  • [24]

    F. P. Bowden, A. Yoffe. Initiation and growth of explosion in liquids and solids, Cambridge University Press, Cambridge, 1952.Google Scholar

  • [25]

    F. P. Bowden, A. Yoffe, Fast reactions in solids, Butterworths, London, 1958.Google Scholar

  • [26]

    P. A. Thiessen, K. Meyer, G. Heinicke Grundlagen der Tribochemie; Akademie-Verlag, Berlin, 1967.Google Scholar

  • [27]

    P. Baláž. Mechanochemistry in nanoscience and minerals engineering; Springer-Verlag, Berlin, 2008.Google Scholar

  • [28]

    A. Chadwick, S. Savin, Structure and dynamics in nanoionic materials. Solid State Ion. 2006, 177, 3001.Google Scholar

  • [29]

    P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. Faraday Discuss. 2007, 134, 67.Google Scholar

  • [30]

    D. Wohlmuth, V. Epp, B. Stanje, A. M. Welsch, H. Behrens, M. Wilkening, High-energy mechanical treatment boosts ion transport in nanocrystalline Li2B4O7. J. Am. Ceram. Soc. 2016, 99, 1687.Google Scholar

  • [31]

    H. Brandstätter, D. Wohlmuth, P. Bottke, V. Pregartner, M. Wilkening, Li ion dynamics in nanocrystalline and structurally disordered Li2TiO3. Z. Phys. Chem. 2015, 229, 1363.Google Scholar

  • [32]

    R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123.Google Scholar

  • [33]

    L. W. Ji, Z. Lin, M. Alcoutlabi, X. W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy. Environ. Sci. 2011, 4, 2682.Google Scholar

  • [34]

    C. Liu, F. Li, L. P. Ma, H. M. Cheng, Advanced materials for energy storage. Adv. Mater. 2010, 22, E28.Google Scholar

  • [35]

    M. Holzapfel, H. Buqa, L. J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, F. M. Petrat, Nano silicon for lithium-ion batteries. Electrochim. Acta 2006, 52, 973.Google Scholar

  • [36]

    A. Dunst, V. Epp, I. Hanzu, S. A. Freunberger, M. Wilkening, Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 - the discharge product in lithium-air batteries. Energy. Environ. Sci. 2014, 7, 2739.Google Scholar

  • [37]

    A. Dunst, M. Sternad, M. Wilkening, Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na2O2 – consequences for Na-oxygen batteries. Mat. Sci. Engin. B 2016, 211, 85.Google Scholar

  • [38]

    W. Puin, P. Heitjans, Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy. Nanostruct. Mater. 1995, 6, 885.Google Scholar

  • [39]

    W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier, Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion. 2000, 131, 159.Google Scholar

  • [40]

    W. Puin, P. Heitjans, W. Dickenscheid, H. Gleiter. in Defects in Insulating Materials, (Eds. O. Kanert and J.-M. Spaeth) World Scientific, Singapore, p. 137, 1993.Google Scholar

  • [41]

    P. Heitjans, A. Schirmer, S. Indris. in Diffusion in Condensed Matter – Methods, Materials, Models, (Eds. P. Heitjans and J. Kärger) Springer, Berlin, p. 367, 2005.Google Scholar

  • [42]

    J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem. 1995, 23, 171.Google Scholar

  • [43]

    N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 2000, 408, 946.Google Scholar

  • [44]

    J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805.Google Scholar

  • [45]

    J. Maier, Nanoionics: ionic charge carriers in small systems. Phys. Chem. Chem. Phys. 2009, 11, 3011.Google Scholar

  • [46]

    J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems. Chem. Mater. 2014, 26, 348.Google Scholar

  • [47]

    D. R. Figueroa, A. V. Chadwick, J. H. Strange, NMR relaxation, ionic conductivity and self-diffusion process in barium fluoride. J. Phys. C Solid State 1978, 11, 55.Google Scholar

  • [48]

    A. Düvel, M. Wilkening, R. Uecker, S. Wegner, V. Šepelák, P. Heitjans, Mechanosynthesized nanocrystalline BaLiF3: the impact of grain boundaries and structural disorder on ionic transport. Phys. Chem. Chem. Phys. 2010, 12, 11251.Google Scholar

  • [49]

    S. Breuer, M. Wilkening: to be published 2016.Google Scholar

  • [50]

    A. Kuhn, M. Kunze, P. Sreeraj, H. D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid State Nucl. Magn. Reson 2012, 42, 2.Google Scholar

  • [51]

    A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, M. Wilkening, Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B 2011, 83, 094302.Google Scholar

  • [52]

    D. Zahn, P. Heitjans, J. Maier, From composites to solid solutions: modeling of ionic conductivity in the CaF2-BaF2 system. Chem. Eur. J. 2012, 18, 6225.Google Scholar

  • [53]

    A. V. Chadwick, A. Düvel, P. Heitjans, D. M. Pickup, S. Ramos, D. C. Sayle, T. X. T. Sayle, X-ray absorption spectroscopy and computer modelling study of nanocrystalline binary alkaline earth fluorides. Inst. Phys.: Conf. Series: Mat. Sci. Engin. 2015, 80, Article no: 012005, 4 pages.Google Scholar

  • [54]

    A. Düvel, S. Wegner, K. Efimov, A. Feldhoff, P. Heitjans, M. Wilkening, Access to metastable complex ion conductors via mechanosynthesis: preparation, microstructure and conductivity of (Ba,Sr)LiF3 with inverse perovskite structure. J. Mater. Chem. 2011, 21, 6238.Google Scholar

  • [55]

    L. N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ion. 2013, 239, 41.Google Scholar

  • [56]

    F. Gingl, BaMgF4 and Ba2Mg3F10: new examples for structural relationships between hydrides and fluorides. Z. Anorg. Allg. Chem. 1997, 623, 705.Google Scholar

  • [57]

    C. V. Kannan, K. Shimamura, H. R. Zeng, H. Kimura, E. G. Villora, K. Kitamura, Ferroelectric and anisotropic electrical properties of BaMgF4 single crystal for vacuum UV devices. J. Appl. Phys. 2008, 104, 114113.Google Scholar

  • [58]

    D. L. Sidebottom, Dimensionality dependence of the conductivity dispersion in ionic materials. Phys. Rev. Lett. 1999, 83, 983.Google Scholar

  • [59]

    S. W. Kim, H. Y. Chang, P. S. Halasyamani, selective pure-phase synthesis of the multiferroic BaMF4 (M=Mg, Mn, Co, Ni, and Zn) family. J. Am. Chem. Soc. 2010, 132, 17684.Google Scholar

  • [60]

    R. M. Kowalczyk, T. F. Kemp, D. Walker, K. J. Pike, P. A. Thomas, J. Kreisel, R. Dupree, M. E. Newton, J. V. Hanna, M. E. Smith, A variable temperature solid-state nuclear magnetic resonance, electron paramagnetic resonance and Raman scattering study of molecular dynamics in ferroelectric fluorides. J. Phys.: Condes. Matter. 2011, 23, Article no: 315402, 16 pages.Google Scholar

  • [61]

    F. Preishuber-Pflügl, M. Wilkening: to be published 2016.Google Scholar

  • [62]

    S. Chaudhuri, F. Wang, C. P. Grey, Resolving the different dynamics of the fluorine sublattices in the anionic conductor BaSnF4 by using high-resolution MAS NMR techniques. J. Am. Chem. Soc. 2002, 124, 11746.Google Scholar

  • [63]

    G. Dénès, T. Birchall, M. Sayer, M. F. Bell, BaSnF4 – a new fluoride ionic conductor with the α-PbSnF4 structure. Solid State Ion. 1984, 13, 213.Google Scholar

  • [64]

    G. Dénès, J. Hantash, A. Muntasar, P. Oldfield, A. Bartlett, Variations of BaSnF4 fast ion conductor with the method of preparation and temperature. Hyperfine Interact 2007, 170, 145.Google Scholar

  • [65]

    L. N. Patro, K. Hariharan, Influence of synthesis methodology on the ionic transport properties of BaSnF4. Mater. Res. Bull. 2011, 46, 732.Google Scholar

  • [66]

    J.-M Réau, C. Lucat, J. Portier, P. Hagenmuller, L. Cot, S. Vilminot, Etude des proprietes structurales et electrioues d’un nouveau conducteur anionique: PbSnF4. Mater. Res. Bull. 1978, 13, 877.Google Scholar

  • [67]

    A. V. Chadwick, E.-S. Hammam, D. van der Putten, J. H. Strange, Studies of ionic transport in MF2-SnF2 systems. Cryst. Latt. Def. Amorph. Mat. 1987, 15, 303.Google Scholar

  • [68]

    V. Šepelák, S. M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A. S. Ulrich, M. Ghafari, H. Hahn, C. P. Grey, K. D. Becker, P. Heitjans, Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. J. Mater. Chem. 2012, 22, 3117.Google Scholar

  • [69]

    V. Šepelák, M. Myndyk, M. Fabián, K. L. Da Silva, A. Feldhoff, D. Menzel, M. Ghafari, H. Hahn, P. Heitjans, K. D. Becker, Mechanosynthesis of nanocrystalline fayalite Fe2SiO4. Chem. Commun. (Camb) 2012, 48, 11121.Google Scholar

  • [70]

    V. Šepelák, S. Begin-Colin, G. Le Caer, Transformations in oxides induced by high-energy ball-milling. Dalton. Trans. 2012, 41, 11927.Google Scholar

  • [71]

    K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kübel, M. Bruns, A. Paesano, A. Düvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, V. Šepelák, Mechanosynthesized BiFeO3 nanoparticles with highly reactive surface and enhanced magnetization. J. Phys. Chem. C 2011, 115, 7209.Google Scholar

  • [72]

    V. Šepelák, M. Myndyk, R. Witte, J. Roder, D. Menzel, R. H. Schuster, H. Hahn, P. Heitjans, K. D. Becker, The mechanically induced structural disorder in barium hexaferrite BaFe12O19 and its impact on magnetism. Faraday Discuss. 2014, 170, 121.Google Scholar

  • [73]

    A. Düvel, E. Romanova, M. Sharifi, D. Freude, M. Wark, P. Heitjans, M. Wilkening, Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3: access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites. J. Phys. Chem. C 2011, 115, 22770.Google Scholar

  • [74]

    V. Šepelák, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, P. Heitjans, High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action. J. Mater. Chem. 2011, 21, 8332.Google Scholar

  • [75]

    M. Fabián, P. Bottke, V. Girman, A. Düvel, K. L. Da Silva, M. Wilkening, H. Hahn, P. Heitjans, V. Šepelák, A simple and straightforward mechanochemical synthesis of the far-from-equilibrium zinc aluminate, ZnAl2O4, and its response to thermal treatment. RSC Adv. 2015, 5, 54321.Google Scholar

  • [76]

    L. J. Berchmans, M. Myndyk, K. L. Da Silva, A. Feldhoff, J. Šubrt, P. Heitjans, K. D. Becker, V. Šepelák, A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure. J. Alloys Compd. 2010, 500, 68.Google Scholar

  • [77]

    V. Šepelák, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, C. P. Grey, A one-step mechanochemical route to core-shell Ca2SnO4 nanoparticles followed by 119Sn MAS NMR and 119Sn Mössbauer spectroscopy. Chem. Mater. 2009, 21, 2518.Google Scholar

  • [78]

    J. H. Kwak, J. Z. Hu, D. Mei, C. W. Yi, D. H. Kim, C. H. F. Peden, L. F. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of Platinum on γ-Al2O3. Science 2009, 325, 1670.Google Scholar

  • [79]

    D. H. Mei, J. H. Kwak, J. Z. Hu, S. J. Cho, J. Szanyi, L. F. Allard, C. H. F. Peden, Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-Supported Pt catalysts. J. Phys. Chem. Lett. 2010, 1, 2688.Google Scholar

  • [80]

    S. K. Lee, , S. Y. Park, Y. S. Yi, J. Moon. Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. J. Phys. Chem. C 2010, 114, 13890.Google Scholar

  • [81]

    A. Qiao, V. N. Kalevaru, J. Radnik, A. Düvel, P. Heitjans, A. S. H. Kumar, P. S. S. Prasad, N. Lingaiah, A. Martin, Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: effect of source of alumina on the catalytic performance. Ind. Eng. Chem. Res. 2014, 53, 18711.Google Scholar

  • [82]

    J. H. Kwak, J. Z. Hu, D. H. Kim, J. Szanyi, C. H. F. Peden, Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 2007, 251, 189.Google Scholar

  • [83]

    J. H. Kwak, J. Z. Hu, A. Lukaski, D. H. Kim, J. Szanyi, C. H. F. Peden, Role of pentacoordinated Al3+ ions in the high temperature phase transformation of γ-Al2O3. J. Phys. Chem. C 2008, 112, 9486.Google Scholar

About the article

Received: 2016-05-30

Accepted: 2016-08-16

Published Online: 2016-09-22

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1963.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in