Jump to ContentJump to Main Navigation
Show Summary Details

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR increased in 2015: 2.560
Rank 8 out of 26 in category Cristallography in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198
Impact per Publication (IPP) 2015: 1.834

See all formats and pricing
Just Accepted


Structure and ion dynamics of mechanosynthesized oxides and fluorides

Access to nanocrystalline ceramics via high-energy ball-milling – a short review

Martin Wilkening
  • Corresponding author
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
  • Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
  • Email:
/ Andre Düvel
  • Institute of Physical Chemistry and Electrochemistry, Zentrum für Festkörperchemie und Neue Materialien (ZFM), Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
/ Florian Preishuber-Pflügl
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
/ Klebson da Silva
  • Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig, Germany
  • Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3-3a, D-30167 Hannover, Germany
  • Department of Physics of Materials, State University of Maringá, Av. Colombo 5790, 87020900 Maringá, Brazil
  • Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
/ Stefan Breuer
  • Institute for Chemistry and Technology of Materials (member of NAWI Graz), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
/ Vladimir Šepelák
  • Corresponding author
  • Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • Email:
/ Paul Heitjans
  • Corresponding author
  • Institute of Physical Chemistry and Electrochemistry, Zentrum für Festkörperchemie und Neue Materialien (ZFM), Leibniz Universität Hannover, Callinstraße 3-3a, D-30167 Hannover, Germany
  • Email:
Published Online: 2016-09-22 | DOI: https://doi.org/10.1515/zkri-2016-1963


In many cases, limitations in conventional synthesis routes hamper the accessibility to materials with properties that have been predicted by theory. For instance, metastable compounds with local non-equilibrium structures can hardly be accessed by solid-state preparation techniques often requiring high synthesis temperatures. Also other ways of preparation lead to the thermodynamically stable rather than metastable products. Fortunately, such hurdles can be overcome by mechanochemical synthesis. Mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis of not only new, metastable compounds but also of nanocrystalline materials with unusual or enhanced properties such as ion transport. In this short review we report about local structures and ion transport of oxides and fluorides mechanochemically prepared by high-energy ball-milling.

Keywords: ball milling; conductivity; nanocrystalline ceramics; NMR; non-equilibrium phases


  • [1]

    S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413.

  • [2]

    P. Baláž, M. Achimovicova, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571.

  • [3]

    V. Šepelák, A. Düvel, M. Wilkening, K. D. Becker, P. Heitjans, Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42, 7507.

  • [4]

    F. Preishuber-Pflügl, M. Wilkening, Mechanochemically synthesized fluorides: local structures and ion transport. Dalton. Trans. 2016, 45, 8675.

  • [5]

    P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys.: Condens. Matter. 2003, 15, R1257.

  • [6]

    S. Indris, D. Bork, P. Heitjans, Nanocrystalline oxide ceramics prepared by high-energy ball milling. J. Mater. Synth. Process. 2000, 8, 245.

  • [7]

    M. Wilkening, V. Epp, A. Feldhoff, P. Heitjans, Tuning the Li diffusivity of poor ionic conductors by mechanical treatment: high Li conductivity of strongly defective LiTaO3 nanoparticles. J. Phys. Chem. C 2008, 112, 9291.

  • [8]

    P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. – Spec. Top. 2008, 16,1 97.

  • [9]

    V. Epp, M. Wilkening, Motion of Li+ in nanoengineered LiBH4 and LiBH4:Al2O3 comparison with the microcrystalline form. ChemPhysChem 2013, 14, 3706.

  • [10]

    A. Düvel, J. Bednarcik, V. Šepelák, P. Heitjans, Mechanosynthesis of the fast fluoride ion conductor Ba1–xLaxF2+x: from the fluorite to the tysonite structure. J. Phys. Chem. C 2014, 118, 7117.

  • [11]

    G. Scholz, S. Breitfeld, T. Krahl, A. Düvel, P. Heitjans, E. Kemnitz, Mechanochemical synthesis of MgF2 – MF2 composite systems (M=Ca, Sr, Ba). Solid State Sci. 2015, 50, 32.

  • [12]

    S. Kipp, V. Šepelák, K. D. Becker, Mechanochemistry. Chem. unserer Zeit 2005, 39, 384.

  • [13]

    V. Šepelák, I. Bergmann, S. Kipp, K. D. Becker, Nanocrystalline ferrites prepared by mechanical activation and mechanosynthesis. Z. Anorg. Allg. Chem. 2005, 631, 993.

  • [14]

    A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Mixed alkaline-earth effect in the metastable anion conductor Ba1–xCaxF2 (0 ≤ x ≤ 1): correlating long-range ion transport with local structures revealed by ultrafast 19F MAS NMR. J. Phys. Chem. C 2011, 115, 23784.

  • [15]

    B. Ruprecht, M. Wilkening, A. Feldhoff, S. Steuernagel, P. Heitjans, High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys. Chem. Chem. Phys. 2009, 11, 3071.

  • [16]

    B. Ruprecht, M. Wilkening, S. Steuernagel, P. Heitjans, Anion diffusivity in highly conductive nanocrystalline BaF2:CaF2 composites prepared by high-energy ball milling. J. Mater. Chem. 2008, 18, 5412.

  • [17]

    F. Preishuber-Pflügl, P. Bottke, V. Pregartner, B. Bitschnau, M. Wilkening, Correlated fluorine diffusion and ionic conduction in the nanocrystalline F- solid electrolyte Ba0.6La0.4F2.4 - 19F T NMR relaxation vs. conductivity measurements. Phys. Chem. Chem. Phys. 2014, 16, 9580.

  • [18]

    F. Preishuber-Pflügl, V. Epp, S. Nakhal, M. Lerch, M. Wilkening, Defect-enhanced F- ion conductivity in layer-structured nanocrystalline BaSnF4 prepared by high-energy ball milling combined with soft annealing. Phys. Status Solidi C 2015, 12, 10.

  • [19]

    F. Preishuber-Pflügl, M. Wilkening, Evidence of low dimensional ion transport in mechanosynthesized nanocrystalline BaMgF4. Dalton. Trans. 2014, 43, 9901.

  • [20]

    D. Wohlmuth, V. Epp, M. Wilkening, Fast Li ion dynamics in the solid electrolyte Li7P3S11 as probed by 6,7Li NMR spin-lattice relaxation. ChemPhysChem 2015, 16, 2582.

  • [21]

    C. Rongeat, M. A. Reddy, R. Witter, M. Fichtner, Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J. Phys. Chem. C 2013, 117, 4943.

  • [22]

    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 2001, 46, 1.

  • [23]

    F. P. Bowden, D. Tabor, The friction and lubrication of solids, Clarendon Press, Oxford, 1958.

  • [24]

    F. P. Bowden, A. Yoffe. Initiation and growth of explosion in liquids and solids, Cambridge University Press, Cambridge, 1952.

  • [25]

    F. P. Bowden, A. Yoffe, Fast reactions in solids, Butterworths, London, 1958.

  • [26]

    P. A. Thiessen, K. Meyer, G. Heinicke Grundlagen der Tribochemie; Akademie-Verlag, Berlin, 1967.

  • [27]

    P. Baláž. Mechanochemistry in nanoscience and minerals engineering; Springer-Verlag, Berlin, 2008.

  • [28]

    A. Chadwick, S. Savin, Structure and dynamics in nanoionic materials. Solid State Ion. 2006, 177, 3001.

  • [29]

    P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. Faraday Discuss. 2007, 134, 67.

  • [30]

    D. Wohlmuth, V. Epp, B. Stanje, A. M. Welsch, H. Behrens, M. Wilkening, High-energy mechanical treatment boosts ion transport in nanocrystalline Li2B4O7. J. Am. Ceram. Soc. 2016, 99, 1687.

  • [31]

    H. Brandstätter, D. Wohlmuth, P. Bottke, V. Pregartner, M. Wilkening, Li ion dynamics in nanocrystalline and structurally disordered Li2TiO3. Z. Phys. Chem. 2015, 229, 1363.

  • [32]

    R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123.

  • [33]

    L. W. Ji, Z. Lin, M. Alcoutlabi, X. W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy. Environ. Sci. 2011, 4, 2682.

  • [34]

    C. Liu, F. Li, L. P. Ma, H. M. Cheng, Advanced materials for energy storage. Adv. Mater. 2010, 22, E28.

  • [35]

    M. Holzapfel, H. Buqa, L. J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, F. M. Petrat, Nano silicon for lithium-ion batteries. Electrochim. Acta 2006, 52, 973.

  • [36]

    A. Dunst, V. Epp, I. Hanzu, S. A. Freunberger, M. Wilkening, Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 - the discharge product in lithium-air batteries. Energy. Environ. Sci. 2014, 7, 2739.

  • [37]

    A. Dunst, M. Sternad, M. Wilkening, Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na2O2 – consequences for Na-oxygen batteries. Mat. Sci. Engin. B 2016, 211, 85.

  • [38]

    W. Puin, P. Heitjans, Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy. Nanostruct. Mater. 1995, 6, 885.

  • [39]

    W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier, Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion. 2000, 131, 159.

  • [40]

    W. Puin, P. Heitjans, W. Dickenscheid, H. Gleiter. in Defects in Insulating Materials, (Eds. O. Kanert and J.-M. Spaeth) World Scientific, Singapore, p. 137, 1993.

  • [41]

    P. Heitjans, A. Schirmer, S. Indris. in Diffusion in Condensed Matter – Methods, Materials, Models, (Eds. P. Heitjans and J. Kärger) Springer, Berlin, p. 367, 2005.

  • [42]

    J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem. 1995, 23, 171.

  • [43]

    N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 2000, 408, 946.

  • [44]

    J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805.

  • [45]

    J. Maier, Nanoionics: ionic charge carriers in small systems. Phys. Chem. Chem. Phys. 2009, 11, 3011.

  • [46]

    J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems. Chem. Mater. 2014, 26, 348.

  • [47]

    D. R. Figueroa, A. V. Chadwick, J. H. Strange, NMR relaxation, ionic conductivity and self-diffusion process in barium fluoride. J. Phys. C Solid State 1978, 11, 55.

  • [48]

    A. Düvel, M. Wilkening, R. Uecker, S. Wegner, V. Šepelák, P. Heitjans, Mechanosynthesized nanocrystalline BaLiF3: the impact of grain boundaries and structural disorder on ionic transport. Phys. Chem. Chem. Phys. 2010, 12, 11251.

  • [49]

    S. Breuer, M. Wilkening: to be published 2016.

  • [50]

    A. Kuhn, M. Kunze, P. Sreeraj, H. D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid State Nucl. Magn. Reson 2012, 42, 2.

  • [51]

    A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, M. Wilkening, Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B 2011, 83, 094302.

  • [52]

    D. Zahn, P. Heitjans, J. Maier, From composites to solid solutions: modeling of ionic conductivity in the CaF2-BaF2 system. Chem. Eur. J. 2012, 18, 6225.

  • [53]

    A. V. Chadwick, A. Düvel, P. Heitjans, D. M. Pickup, S. Ramos, D. C. Sayle, T. X. T. Sayle, X-ray absorption spectroscopy and computer modelling study of nanocrystalline binary alkaline earth fluorides. Inst. Phys.: Conf. Series: Mat. Sci. Engin. 2015, 80, Article no: 012005, 4 pages.

  • [54]

    A. Düvel, S. Wegner, K. Efimov, A. Feldhoff, P. Heitjans, M. Wilkening, Access to metastable complex ion conductors via mechanosynthesis: preparation, microstructure and conductivity of (Ba,Sr)LiF3 with inverse perovskite structure. J. Mater. Chem. 2011, 21, 6238.

  • [55]

    L. N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ion. 2013, 239, 41.

  • [56]

    F. Gingl, BaMgF4 and Ba2Mg3F10: new examples for structural relationships between hydrides and fluorides. Z. Anorg. Allg. Chem. 1997, 623, 705.

  • [57]

    C. V. Kannan, K. Shimamura, H. R. Zeng, H. Kimura, E. G. Villora, K. Kitamura, Ferroelectric and anisotropic electrical properties of BaMgF4 single crystal for vacuum UV devices. J. Appl. Phys. 2008, 104, 114113.

  • [58]

    D. L. Sidebottom, Dimensionality dependence of the conductivity dispersion in ionic materials. Phys. Rev. Lett. 1999, 83, 983.

  • [59]

    S. W. Kim, H. Y. Chang, P. S. Halasyamani, selective pure-phase synthesis of the multiferroic BaMF4 (M=Mg, Mn, Co, Ni, and Zn) family. J. Am. Chem. Soc. 2010, 132, 17684.

  • [60]

    R. M. Kowalczyk, T. F. Kemp, D. Walker, K. J. Pike, P. A. Thomas, J. Kreisel, R. Dupree, M. E. Newton, J. V. Hanna, M. E. Smith, A variable temperature solid-state nuclear magnetic resonance, electron paramagnetic resonance and Raman scattering study of molecular dynamics in ferroelectric fluorides. J. Phys.: Condes. Matter. 2011, 23, Article no: 315402, 16 pages.

  • [61]

    F. Preishuber-Pflügl, M. Wilkening: to be published 2016.

  • [62]

    S. Chaudhuri, F. Wang, C. P. Grey, Resolving the different dynamics of the fluorine sublattices in the anionic conductor BaSnF4 by using high-resolution MAS NMR techniques. J. Am. Chem. Soc. 2002, 124, 11746.

  • [63]

    G. Dénès, T. Birchall, M. Sayer, M. F. Bell, BaSnF4 – a new fluoride ionic conductor with the α-PbSnF4 structure. Solid State Ion. 1984, 13, 213.

  • [64]

    G. Dénès, J. Hantash, A. Muntasar, P. Oldfield, A. Bartlett, Variations of BaSnF4 fast ion conductor with the method of preparation and temperature. Hyperfine Interact 2007, 170, 145.

  • [65]

    L. N. Patro, K. Hariharan, Influence of synthesis methodology on the ionic transport properties of BaSnF4. Mater. Res. Bull. 2011, 46, 732.

  • [66]

    J.-M Réau, C. Lucat, J. Portier, P. Hagenmuller, L. Cot, S. Vilminot, Etude des proprietes structurales et electrioues d’un nouveau conducteur anionique: PbSnF4. Mater. Res. Bull. 1978, 13, 877.

  • [67]

    A. V. Chadwick, E.-S. Hammam, D. van der Putten, J. H. Strange, Studies of ionic transport in MF2-SnF2 systems. Cryst. Latt. Def. Amorph. Mat. 1987, 15, 303.

  • [68]

    V. Šepelák, S. M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A. S. Ulrich, M. Ghafari, H. Hahn, C. P. Grey, K. D. Becker, P. Heitjans, Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. J. Mater. Chem. 2012, 22, 3117.

  • [69]

    V. Šepelák, M. Myndyk, M. Fabián, K. L. Da Silva, A. Feldhoff, D. Menzel, M. Ghafari, H. Hahn, P. Heitjans, K. D. Becker, Mechanosynthesis of nanocrystalline fayalite Fe2SiO4. Chem. Commun. (Camb) 2012, 48, 11121.

  • [70]

    V. Šepelák, S. Begin-Colin, G. Le Caer, Transformations in oxides induced by high-energy ball-milling. Dalton. Trans. 2012, 41, 11927.

  • [71]

    K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kübel, M. Bruns, A. Paesano, A. Düvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, V. Šepelák, Mechanosynthesized BiFeO3 nanoparticles with highly reactive surface and enhanced magnetization. J. Phys. Chem. C 2011, 115, 7209.

  • [72]

    V. Šepelák, M. Myndyk, R. Witte, J. Roder, D. Menzel, R. H. Schuster, H. Hahn, P. Heitjans, K. D. Becker, The mechanically induced structural disorder in barium hexaferrite BaFe12O19 and its impact on magnetism. Faraday Discuss. 2014, 170, 121.

  • [73]

    A. Düvel, E. Romanova, M. Sharifi, D. Freude, M. Wark, P. Heitjans, M. Wilkening, Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3: access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites. J. Phys. Chem. C 2011, 115, 22770.

  • [74]

    V. Šepelák, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, P. Heitjans, High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action. J. Mater. Chem. 2011, 21, 8332.

  • [75]

    M. Fabián, P. Bottke, V. Girman, A. Düvel, K. L. Da Silva, M. Wilkening, H. Hahn, P. Heitjans, V. Šepelák, A simple and straightforward mechanochemical synthesis of the far-from-equilibrium zinc aluminate, ZnAl2O4, and its response to thermal treatment. RSC Adv. 2015, 5, 54321.

  • [76]

    L. J. Berchmans, M. Myndyk, K. L. Da Silva, A. Feldhoff, J. Šubrt, P. Heitjans, K. D. Becker, V. Šepelák, A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure. J. Alloys Compd. 2010, 500, 68.

  • [77]

    V. Šepelák, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, C. P. Grey, A one-step mechanochemical route to core-shell Ca2SnO4 nanoparticles followed by 119Sn MAS NMR and 119Sn Mössbauer spectroscopy. Chem. Mater. 2009, 21, 2518.

  • [78]

    J. H. Kwak, J. Z. Hu, D. Mei, C. W. Yi, D. H. Kim, C. H. F. Peden, L. F. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of Platinum on γ-Al2O3. Science 2009, 325, 1670.

  • [79]

    D. H. Mei, J. H. Kwak, J. Z. Hu, S. J. Cho, J. Szanyi, L. F. Allard, C. H. F. Peden, Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-Supported Pt catalysts. J. Phys. Chem. Lett. 2010, 1, 2688.

  • [80]

    S. K. Lee, , S. Y. Park, Y. S. Yi, J. Moon. Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. J. Phys. Chem. C 2010, 114, 13890.

  • [81]

    A. Qiao, V. N. Kalevaru, J. Radnik, A. Düvel, P. Heitjans, A. S. H. Kumar, P. S. S. Prasad, N. Lingaiah, A. Martin, Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: effect of source of alumina on the catalytic performance. Ind. Eng. Chem. Res. 2014, 53, 18711.

  • [82]

    J. H. Kwak, J. Z. Hu, D. H. Kim, J. Szanyi, C. H. F. Peden, Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 2007, 251, 189.

  • [83]

    J. H. Kwak, J. Z. Hu, A. Lukaski, D. H. Kim, J. Szanyi, C. H. F. Peden, Role of pentacoordinated Al3+ ions in the high temperature phase transformation of γ-Al2O3. J. Phys. Chem. C 2008, 112, 9486.

About the article

Received: 2016-05-30

Accepted: 2016-08-16

Published Online: 2016-09-22

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1963. Export Citation

Comments (0)

Please log in or register to comment.
Log in