Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)

Issues

Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization

Michael Schöneich
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany
/ Andrea Hohmann
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany
/ Peer Schmidt
  • Corresponding author
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany, Tel.: +49 3573 85827, Fax: +49 3573 85809
  • Email:
/ Florian Pielnhofer
  • Universität Regensburg, Institut für Anorganische Chemie, Universitätsstr. 31, 93053 Regensburg, Germany
/ Frederik Bachhuber
  • Universität Regensburg, Institut für Anorganische Chemie, Universitätsstr. 31, 93053 Regensburg, Germany
/ Richard Weihrich
  • Corresponding author
  • Universität Augsburg, Institut für Materials Ressource Management, Universitätsstr. 1, 86135 Augsburg, Germany, Tel.: +49 598 3132, Fax.: +49 821 598 2411
  • Email:
/ Oliver Osters
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany
/ Marianne Köpf
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany
/ Tom Nilges
  • Corresponding author
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany, Tel.: +49 89 289 13110, Fax: +49 89 289 13762
  • Email:
Published Online: 2016-09-17 | DOI: https://doi.org/10.1515/zkri-2016-1966

Abstract

The application of the EnPhaSyn (theoretical Energy diagrams, experimental Phase formation, Synthesis and characterisation) concept is reviewed with respect to prediction of structures and stability of element allotropes and compound polymorphs, their phase formation and transition processes, and their directed synthesis, respectively. Therein, the relative energetical stability (En) of target compounds and possible decomposition are determined from quantum chemical DFT calculations. Phase formation and transition (Pha) is probed by a gas balance method, developed as high temperature gas balance concept. It helped to study the synthesis and stability range of several compounds experimentally. Applications of the concept and synthesis principles (Syn) of non-equilibrium phases are presented for allotropes of P, As, P1-xAsx, as well as binary and ternary compounds including the Zintl and Laves like phases IrPTe, NiP2, CoSbS, NiBiSe, Li0.2CdP2, Cu3CdCuP10, and Cd4Cu7As.

Keywords: arsenic; DFT; energy diagram; high-temperature gas-balance; laves phase; phase formation; phosphorus; polymorph structures; pyrite; stability; structure prediction

References

  • [1]

    R. Pöttgen, W. Hönle, H. G. von Schnering, Phosphides: Solid State Chemistry. In: Encyclopedia of Inorg. Chem. (Ed. R. B. King), Vol. VII, P. 4255. John Wiley & Sons, Ltd, Chichester, 2005.

  • [2]

    A. Pfitzner, Angew. Chem. 2006, 118, 714.

  • [3]

    J. Messel, T. Nilges, Z. Naturforsch. 2008, 63b, 1077.

  • [4]

    W. W. Rudolph, P. Schmidt, Thermochim. Acta 2011, 521, 112.

  • [5]

    M. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 2005, 44, 6996.

  • [6]

    S. Lange, M. Bawohl, R. Weihrich, T. Nilges, Angew. Chem. Int. Ed. 2008, 47, 5654.

  • [7]

    T. Liang, X. Su, X. Tan, G. Zheng, X. She, Y. Yan, X. Tang, C. Uher, J. Mater. Chem. C 2015, 3, 8550.

  • [8]

    N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 2011, 50, 2014.

  • [9]

    S. Rommel, A. Krach, P. Peter, R. Weihrich, Chem. Eur. J. 2016, 22, 6333.

  • [10]

    H. Schäfer, B. Trenkel, Z. Anorg. Allg. Chem. 1972, 391, 11.

  • [11]

    A. Rabenau, Angew. Chem. Int. Ed. 1985, 24, 1026.

  • [12]

    V. Plies, T. Kohlmann, R. Gruehn, Z. Anorg. Allg. Chem. 1989, 568, 62.

  • [13]

    R. Gruehn, R. Glaum, Angew. Chem. 2000, 112, 4.

  • [14]

    H. Oppermann, M. Schmidt, P. Schmidt, Z. Anorg. Allg. Chem. 2005, 631, 2.

  • [15]

    E. Horvath-Bordon, R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, P. Kroll, Chem. Soc. Rev. 2006, 35, 987.

  • [16]

    M. Binnewies, E. Milke, Thermochemical Data of Elements. Weinheim, New York, Chichester, Brisbane, Singapore, Toronto: Wiley-VCH; 1999.

  • [17]

    M. Binnewies, R. Glaum, M. Schmidt, P. Schmidt, Chemische Transportreaktionen. Berlin: De Gruyter; 2011. [Crossref]

  • [18]

    M. Binnewies, R. Glaum, M. Schmidt, P. Schmidt, Z. Anorg. Allg. Chem. 2013, 639, 219.

  • [19]

    P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen. Habilitation, TU Dresden, Dezember 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549.

  • [20]

    M. Mattesini, S. F. Matar, A. Snis, J. Etourneau, A. Mavromaras, J. Mater. Chem. 1999, 9, 3151.

  • [21]

    Jansen, J. C. Schön, Angew. Chem. 2006, 118, 3484; Angew. Chem. Int. Ed. 2006, 45, 3406.

  • [22]

    M. Jansen, I. V. Pentin, J. C. Schön, Angew. Chem. 2012, 124, 136; Angew. Chem. Int. Ed. 2012, 51, 132.

  • [23]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

  • [24]

    L. Li, Y. Yu,G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.

  • [25]

    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033.

  • [26]

    H. Thurn, H. Krebs, Acta Crystallogr. Sect. B 1969, 25, 125.

  • [27]

    A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. 2004, 43, 4228.

  • [28]

    M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, G. Seifert, Angew. Chem. 2005, 117, 7788.

  • [29]

    M. Häser, U. Schneider, R. Ahlrichs, J. Am. Chem. Soc. 1992, 114, 9551.

  • [30]

    S. Böcker, M. Häser, Z. Anorg. Allg. Chem. 1994, 621, 258.

  • [31]

    O. Osters, T. Nilges, F. Bachhuber, F. Pielnhofer, R. Weihrich, M. Schöneich, P. Schmidt, Angew. Chem. 2012, 124, 3049; Angew. Chem. Int. Ed. 2012, 51, 2994.

  • [32]

    F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, R. Weihrich, Angew. Chem., 2014, 126, 11813. Angew. Chem. Int. Ed. 2014, 53, 11629.

  • [33]

    P. Schmidt, M. Schöneich, M. Bawohl, T. Nilges, R. Weihrich, J. Thermal Anal. Calorim. 2012, 110, 1511.

  • [34]

    F. Bachhuber, J. Rothballer, F. Pielnhofer, R. Weihrich, J. Chem. Phys. 2011, 135, 124508.

  • [35]

    F. Bachhuber, J. Rothballer, T. Söhnel, R. Weihrich, Energy diagrams II – ternary pyrites, Comput. Mater. Sci. 2014, 89, 114.

  • [36]

    F. Pielnhofer, M. Schöneich, T. Lorenz, W. Yan, T. Nilges, R. Weihrich, P. Schmidt, Z. Anorg. Allg. Chem. 2015, 641, 1099.

  • [37]

    F. Bachhuber, J. Rothballer, T. Söhnel, R. Weihrich, Energy diagrams for diphosphides, J. Phys. Chem. 2013, 139, 214705.

  • [38]

    F. Bachhuber, J. van Appen, R. Dronskowski, A. Pfitzner, T. Nilges, P. Schmidt, R. Weihrich, Z. Kristallogr. 2015, 230, 107.

  • [39]

    F. Bachhuber, A. Krach, A. Furtner, T. Söhnel, J. Rothballer, R. Weihrich, J. Solid State Chem. 2015, 226, 29.

  • [40]

    A. Hackert, V. Plies, Z. Anorg. Allg. Chem. 1998, 624, 74.

  • [41]

    O. Knacke, O. Kubaschevski, K. Hesselmann. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer; 1991.

  • [42]

    O. Osters, T. Nilges, M. Schöneich, P. Schmidt, J. Rothballer, F. Pielnhofer, R. Weichrich, Inorg. Chem. 2012, 51, 8119.

  • [43]

    N. Eckstein, A. Hohmann, R. Weihrich, T. Nilges, P. Schmidt, Z. Anorg. Allg. Chem. 2013, 639, 2741.

  • [44]

    A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur 1987, 30, 507.

  • [45]

    A. Brown, S. Rundquist, Acta. Crystallogr. 1965, 19, 684.

  • [46]

    H. Okudera, R. E. Dinnebier, A. Simon, Z. Kristallogr. 2005, 220, 259.

  • [47]

    G. Fasol, M. Cardona, W. Hönle, H. G. von Schnering, Solid State Commun. 1984, 52, 307.

  • [48]

    J. M. Zaug, A. K. Soper, S. M. Clark, Nat. Mater. 2008, 7, 890.

  • [49]

    S. E. Boulfelfel, G. Seifert, Y. Grin, S. Leoni, Phys. Rev. B 2012, 85, 014110.

  • [50]

    G. Seifert, E. Hernández, Chem. Phys. Lett. 2000, 318, 355.

  • [51]

    I. Cabria, J. W. Mintmire, Europhys. Lett. 2004, 65, 82.

  • [52]

    A. J. Karttunen, M. Linnolahti, T. A. Pakkanen, Chem. Eur. J. 2007, 13, 5232.

  • [53]

    A. J. Karttunen, M. Linnolahti, T. A. Pakkanen, ChemPhysChem 2008, 9, 2550.

  • [54]

    P. Nava, R. Ahlrichs, Chem. Eur. J. 2008, 14, 4039.

  • [55]

    H. Guo, N. Lu, J. Dai, X. Wu, X. C. Zeng, J. Phys. Chem. C 2014, 118, 14051.

  • [56]

    B. Liu, M. Köpf, A. A. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, C. Zhou, Adv. Mater. 2015, 27, 4423.

  • [57]

    Y. Maruyama, S. Suzuki, Physica B & C 1981, 105, 99.

  • [58]

    J. N. Baillargeon, K.-Y. Cheng, A. Y. Cho, S.-N. G. Chu, W.-Y. Hwang, USAppl.No.:09/270,883. FamilyID:23033240.

  • [59]

    P. W. Bridgman, J. Am. Chem. Soc.1914, 36, 1344.

  • [60]

    S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028.

  • [61]

    T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. 2008, 181, 1707.

  • [62]

    M. Köpf, N. Eckstein, D. Pfister, C. Grotz, I. Krüger, M. Greiwe, T. Hansen, H. Kohlmann, T. Nilges, J. Crystal Growth 2014, 405, 6.

  • [63]

    H. Krebs, W. Holz, K. H. Worms, Chem. Ber. 1957, 90, 1031.

  • [64]

    M. Puselj, Z. Ban, D. Grdenic, Z. Anorg. Allg. Chem. 1977, 437, 289.

  • [65]

    P. M. Smith, A. J. Leadbetter, A. Apling, J. Phil. Mag. 1975, 31, 57.

  • [66]

    J. B. Holt, S. D. Dunmead. Annu. Rev. Mater. Sci. 1991, 21, 305.

  • [67]

    E. R. Rushton, J. F. Daniels, J. Amer. Chem. Soc. 1926, 48, 384.

  • [68]

    G. Balázs, A. Seitz, M. Scheer, Compr. Inorg. Chem. 2013, II, 1105.

  • [69]

    N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342.

  • [70]

    F. Wang, C. Li, J. C. Yu, Appl. Catal. B 2012, 119-120, 267.

  • [71]

    F. Wang, W. K. H. Ng, J. C. Yu, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li, Appl. Catal. B 2012, 111-112, 409.

  • [72]

    Z. Hu, L. Yuan, Z. Liu, Z. Shen, J. C. Yu, Angew. Chem. 2016, 33, 9732; Angew. Chem. Int. Ed. 2016, 55, 9580.

  • [73]

    C. M. Park, H.-J. Sohn, Adv. Mater. 2007, 19, 2465.

  • [74]

    J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. 2013, 125, 4731.

  • [75]

    M. C. Stan, J. von Zamory, S. Passerini, T. Nilges, M. Winter, J. Mater. Chem. A 2013, 1, 5293.

  • [76]

    W. L. Roth, T. Dewitt, A. J. Smith, J. Am. Chem. Soc. 1947, 69, 2881.

  • [77]

    X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus, Proc. Natl. Acad. Sci. USA 2015, 112, 4523.

  • [78]

    J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 113, 226801.

  • [79]

    A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, C. Zhou, ACS Nano 2015, 9, 5618.

  • [80]

    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nature Photon. 2014, 8, 899.

  • [81]

    Z. Shen, S. Sun, W. Wang, J. Liu, Z. Li, J. C. Yu, J. Mater. Chem. A 2015, 3, 3285.

  • [82]

    M. Meier, R. Weihrich, Chem. Phys. Lett. 2008, 461, 38.

  • [83]

    W. Hönle, H. G. von Schnering, Z. Kristallogr. 1980, 153, 339.

  • [84]

    S. Lange, C. P. Sebastian, L. Zhang, H. Eckert, T. Nilges, Inorg. Chem. 2006, 45, 5878.

  • [85]

    S. Lange, T. Nilges, Z. Naturforsch. 2009, 61b, 871.

  • [86]

    M. Bawohl, T. Nilges, Z. Anorg. Allg. Chem. 2009, 635, 667.

  • [87]

    M. Bawohl, P. Schmidt, T. Nilges, Inorg. Chem. 2013, 52, 11895.

  • [88]

    F. Stein, M. Palm, G. Sauthoff, Intermetallics 2005, 13, 1056.

  • [89]

    W. B. Pearson, Acta Crystallogr. B. 1968, 24, 7.

  • [90]

    F. Laves, Naturwissenschaften 1939, 27, 65.

  • [91]

    F. Laves, H. J. Wallbaum, Z. Anorg. Allg. Chem. 1942, 250, 110.

  • [92]

    A. Simon, Angew. Chem. 1983, 95, 94; Angew. Chem., Int. Ed. 1983, 22, 95.

  • [93]

    W. Hermes, T. Harmening, R. Pöttgen, Chem. Mater. 2009, 21, 3325.

  • [94]

    C. Reichert, H. Kohlmann, Z. Anorg. Allg. Chem. 2011, 637, 1030.

  • [95]

    M. Y. Teslyuk, G. I. Oleksiv, Dopov. Akad. Nauk B 1965, 10, 1329.

  • [96]

    K. Cenzual, B. Chabot, E. Parthe’, J. Solid State Chem. 1987, 70, 229.

  • [97]

    E. I. Gladyshevskii, P. I. Kripyakevich, M. Yu. Teslyuk, Dokl. Akad. Nauk SSSR 1952, 85, 81.

  • [98]

    S. Linsinger, M. Eul, C. Schwickert, R. Decourt, B. Chevalier, U. Ch. Rodewald, J.-L. Bobet, R. Pöttgen, Intermetallics 2011, 10, 1579.

  • [99]

    P. I. Kriyakevich, E. I. Gladyshevskii, E. E. Cherkashin, E. I. Hladyshevskii, Dokl. Akad. Nauk SSSR 19 52, 82, 253.

  • [100]

    M. S. Sulonen, Acta Polytech. Scand. 1962, 18, 22.

  • [101]

    N. Eckstein, I. Krüger, F. Bachhuber, R. Weihrich, J. E. Barquera-Lozada, L. van Wüllen, T. Nilges, J. Mater. Chem. A 2015, 3, 6484.

About the article

Received: 2016-05-31

Accepted: 2016-08-16

Published Online: 2016-09-17

Published in Print: 2017-02-01



Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1966. Export Citation

Comments (0)

Please log in or register to comment.
Log in