Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)

Issues

Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization

Michael Schöneich
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Hohmann
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peer Schmidt
  • Corresponding author
  • BTU Cottbus-Senftenberg, Institut für Angewandte Chemie, Großenhainer Str. 57, 01968 Senftenberg, Germany, Tel.: +49 3573 85827, Fax: +49 3573 85809
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Pielnhofer
  • Universität Regensburg, Institut für Anorganische Chemie, Universitätsstr. 31, 93053 Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frederik Bachhuber
  • Universität Regensburg, Institut für Anorganische Chemie, Universitätsstr. 31, 93053 Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard Weihrich
  • Corresponding author
  • Universität Augsburg, Institut für Materials Ressource Management, Universitätsstr. 1, 86135 Augsburg, Germany, Tel.: +49 598 3132, Fax.: +49 821 598 2411
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Osters
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marianne Köpf
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tom Nilges
  • Corresponding author
  • Technische Universität München, Department für Chemie, Lichtenbergstr. 4, 85748 Garching b. München, Germany, Tel.: +49 89 289 13110, Fax: +49 89 289 13762
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-17 | DOI: https://doi.org/10.1515/zkri-2016-1966

Abstract

The application of the EnPhaSyn (theoretical Energy diagrams, experimental Phase formation, Synthesis and characterisation) concept is reviewed with respect to prediction of structures and stability of element allotropes and compound polymorphs, their phase formation and transition processes, and their directed synthesis, respectively. Therein, the relative energetical stability (En) of target compounds and possible decomposition are determined from quantum chemical DFT calculations. Phase formation and transition (Pha) is probed by a gas balance method, developed as high temperature gas balance concept. It helped to study the synthesis and stability range of several compounds experimentally. Applications of the concept and synthesis principles (Syn) of non-equilibrium phases are presented for allotropes of P, As, P1-xAsx, as well as binary and ternary compounds including the Zintl and Laves like phases IrPTe, NiP2, CoSbS, NiBiSe, Li0.2CdP2, Cu3CdCuP10, and Cd4Cu7As.

Keywords: arsenic; DFT; energy diagram; high-temperature gas-balance; laves phase; phase formation; phosphorus; polymorph structures; pyrite; stability; structure prediction

References

  • [1]

    R. Pöttgen, W. Hönle, H. G. von Schnering, Phosphides: Solid State Chemistry. In: Encyclopedia of Inorg. Chem. (Ed. R. B. King), Vol. VII, P. 4255. John Wiley & Sons, Ltd, Chichester, 2005.Google Scholar

  • [2]

    A. Pfitzner, Angew. Chem. 2006, 118, 714.Google Scholar

  • [3]

    J. Messel, T. Nilges, Z. Naturforsch. 2008, 63b, 1077.Google Scholar

  • [4]

    W. W. Rudolph, P. Schmidt, Thermochim. Acta 2011, 521, 112.Google Scholar

  • [5]

    M. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 2005, 44, 6996.Google Scholar

  • [6]

    S. Lange, M. Bawohl, R. Weihrich, T. Nilges, Angew. Chem. Int. Ed. 2008, 47, 5654.Google Scholar

  • [7]

    T. Liang, X. Su, X. Tan, G. Zheng, X. She, Y. Yan, X. Tang, C. Uher, J. Mater. Chem. C 2015, 3, 8550.Google Scholar

  • [8]

    N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 2011, 50, 2014.Google Scholar

  • [9]

    S. Rommel, A. Krach, P. Peter, R. Weihrich, Chem. Eur. J. 2016, 22, 6333.Google Scholar

  • [10]

    H. Schäfer, B. Trenkel, Z. Anorg. Allg. Chem. 1972, 391, 11.Google Scholar

  • [11]

    A. Rabenau, Angew. Chem. Int. Ed. 1985, 24, 1026.Google Scholar

  • [12]

    V. Plies, T. Kohlmann, R. Gruehn, Z. Anorg. Allg. Chem. 1989, 568, 62.Google Scholar

  • [13]

    R. Gruehn, R. Glaum, Angew. Chem. 2000, 112, 4.Google Scholar

  • [14]

    H. Oppermann, M. Schmidt, P. Schmidt, Z. Anorg. Allg. Chem. 2005, 631, 2.Google Scholar

  • [15]

    E. Horvath-Bordon, R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, P. Kroll, Chem. Soc. Rev. 2006, 35, 987.Google Scholar

  • [16]

    M. Binnewies, E. Milke, Thermochemical Data of Elements. Weinheim, New York, Chichester, Brisbane, Singapore, Toronto: Wiley-VCH; 1999.Google Scholar

  • [17]

    M. Binnewies, R. Glaum, M. Schmidt, P. Schmidt, Chemische Transportreaktionen. Berlin: De Gruyter; 2011.CrossrefGoogle Scholar

  • [18]

    M. Binnewies, R. Glaum, M. Schmidt, P. Schmidt, Z. Anorg. Allg. Chem. 2013, 639, 219.Google Scholar

  • [19]

    P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen. Habilitation, TU Dresden, Dezember 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549.

  • [20]

    M. Mattesini, S. F. Matar, A. Snis, J. Etourneau, A. Mavromaras, J. Mater. Chem. 1999, 9, 3151.Google Scholar

  • [21]

    Jansen, J. C. Schön, Angew. Chem. 2006, 118, 3484; Angew. Chem. Int. Ed. 2006, 45, 3406.Google Scholar

  • [22]

    M. Jansen, I. V. Pentin, J. C. Schön, Angew. Chem. 2012, 124, 136; Angew. Chem. Int. Ed. 2012, 51, 132.Google Scholar

  • [23]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.Google Scholar

  • [24]

    L. Li, Y. Yu,G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.Google Scholar

  • [25]

    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033.Google Scholar

  • [26]

    H. Thurn, H. Krebs, Acta Crystallogr. Sect. B 1969, 25, 125.Google Scholar

  • [27]

    A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. 2004, 43, 4228.Google Scholar

  • [28]

    M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, G. Seifert, Angew. Chem. 2005, 117, 7788.Google Scholar

  • [29]

    M. Häser, U. Schneider, R. Ahlrichs, J. Am. Chem. Soc. 1992, 114, 9551.Google Scholar

  • [30]

    S. Böcker, M. Häser, Z. Anorg. Allg. Chem. 1994, 621, 258.Google Scholar

  • [31]

    O. Osters, T. Nilges, F. Bachhuber, F. Pielnhofer, R. Weihrich, M. Schöneich, P. Schmidt, Angew. Chem. 2012, 124, 3049; Angew. Chem. Int. Ed. 2012, 51, 2994.Google Scholar

  • [32]

    F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, R. Weihrich, Angew. Chem., 2014, 126, 11813. Angew. Chem. Int. Ed. 2014, 53, 11629.Google Scholar

  • [33]

    P. Schmidt, M. Schöneich, M. Bawohl, T. Nilges, R. Weihrich, J. Thermal Anal. Calorim. 2012, 110, 1511.Google Scholar

  • [34]

    F. Bachhuber, J. Rothballer, F. Pielnhofer, R. Weihrich, J. Chem. Phys. 2011, 135, 124508.Google Scholar

  • [35]

    F. Bachhuber, J. Rothballer, T. Söhnel, R. Weihrich, Energy diagrams II – ternary pyrites, Comput. Mater. Sci. 2014, 89, 114.Google Scholar

  • [36]

    F. Pielnhofer, M. Schöneich, T. Lorenz, W. Yan, T. Nilges, R. Weihrich, P. Schmidt, Z. Anorg. Allg. Chem. 2015, 641, 1099.Google Scholar

  • [37]

    F. Bachhuber, J. Rothballer, T. Söhnel, R. Weihrich, Energy diagrams for diphosphides, J. Phys. Chem. 2013, 139, 214705.Google Scholar

  • [38]

    F. Bachhuber, J. van Appen, R. Dronskowski, A. Pfitzner, T. Nilges, P. Schmidt, R. Weihrich, Z. Kristallogr. 2015, 230, 107.Google Scholar

  • [39]

    F. Bachhuber, A. Krach, A. Furtner, T. Söhnel, J. Rothballer, R. Weihrich, J. Solid State Chem. 2015, 226, 29.Google Scholar

  • [40]

    A. Hackert, V. Plies, Z. Anorg. Allg. Chem. 1998, 624, 74.Google Scholar

  • [41]

    O. Knacke, O. Kubaschevski, K. Hesselmann. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer; 1991.Google Scholar

  • [42]

    O. Osters, T. Nilges, M. Schöneich, P. Schmidt, J. Rothballer, F. Pielnhofer, R. Weichrich, Inorg. Chem. 2012, 51, 8119.Google Scholar

  • [43]

    N. Eckstein, A. Hohmann, R. Weihrich, T. Nilges, P. Schmidt, Z. Anorg. Allg. Chem. 2013, 639, 2741.Google Scholar

  • [44]

    A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur 1987, 30, 507.Google Scholar

  • [45]

    A. Brown, S. Rundquist, Acta. Crystallogr. 1965, 19, 684.Google Scholar

  • [46]

    H. Okudera, R. E. Dinnebier, A. Simon, Z. Kristallogr. 2005, 220, 259.Google Scholar

  • [47]

    G. Fasol, M. Cardona, W. Hönle, H. G. von Schnering, Solid State Commun. 1984, 52, 307.Google Scholar

  • [48]

    J. M. Zaug, A. K. Soper, S. M. Clark, Nat. Mater. 2008, 7, 890.Google Scholar

  • [49]

    S. E. Boulfelfel, G. Seifert, Y. Grin, S. Leoni, Phys. Rev. B 2012, 85, 014110.Google Scholar

  • [50]

    G. Seifert, E. Hernández, Chem. Phys. Lett. 2000, 318, 355.Google Scholar

  • [51]

    I. Cabria, J. W. Mintmire, Europhys. Lett. 2004, 65, 82.Google Scholar

  • [52]

    A. J. Karttunen, M. Linnolahti, T. A. Pakkanen, Chem. Eur. J. 2007, 13, 5232.Google Scholar

  • [53]

    A. J. Karttunen, M. Linnolahti, T. A. Pakkanen, ChemPhysChem 2008, 9, 2550.Google Scholar

  • [54]

    P. Nava, R. Ahlrichs, Chem. Eur. J. 2008, 14, 4039.Google Scholar

  • [55]

    H. Guo, N. Lu, J. Dai, X. Wu, X. C. Zeng, J. Phys. Chem. C 2014, 118, 14051.Google Scholar

  • [56]

    B. Liu, M. Köpf, A. A. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, C. Zhou, Adv. Mater. 2015, 27, 4423.Google Scholar

  • [57]

    Y. Maruyama, S. Suzuki, Physica B & C 1981, 105, 99.Google Scholar

  • [58]

    J. N. Baillargeon, K.-Y. Cheng, A. Y. Cho, S.-N. G. Chu, W.-Y. Hwang, USAppl.No.:09/270,883. FamilyID:23033240.Google Scholar

  • [59]

    P. W. Bridgman, J. Am. Chem. Soc.1914, 36, 1344.Google Scholar

  • [60]

    S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028.Google Scholar

  • [61]

    T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. 2008, 181, 1707.Google Scholar

  • [62]

    M. Köpf, N. Eckstein, D. Pfister, C. Grotz, I. Krüger, M. Greiwe, T. Hansen, H. Kohlmann, T. Nilges, J. Crystal Growth 2014, 405, 6.Google Scholar

  • [63]

    H. Krebs, W. Holz, K. H. Worms, Chem. Ber. 1957, 90, 1031.Google Scholar

  • [64]

    M. Puselj, Z. Ban, D. Grdenic, Z. Anorg. Allg. Chem. 1977, 437, 289.Google Scholar

  • [65]

    P. M. Smith, A. J. Leadbetter, A. Apling, J. Phil. Mag. 1975, 31, 57.Google Scholar

  • [66]

    J. B. Holt, S. D. Dunmead. Annu. Rev. Mater. Sci. 1991, 21, 305.Google Scholar

  • [67]

    E. R. Rushton, J. F. Daniels, J. Amer. Chem. Soc. 1926, 48, 384.Google Scholar

  • [68]

    G. Balázs, A. Seitz, M. Scheer, Compr. Inorg. Chem. 2013, II, 1105.Google Scholar

  • [69]

    N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342.Google Scholar

  • [70]

    F. Wang, C. Li, J. C. Yu, Appl. Catal. B 2012, 119-120, 267.Google Scholar

  • [71]

    F. Wang, W. K. H. Ng, J. C. Yu, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li, Appl. Catal. B 2012, 111-112, 409.Google Scholar

  • [72]

    Z. Hu, L. Yuan, Z. Liu, Z. Shen, J. C. Yu, Angew. Chem. 2016, 33, 9732; Angew. Chem. Int. Ed. 2016, 55, 9580.Google Scholar

  • [73]

    C. M. Park, H.-J. Sohn, Adv. Mater. 2007, 19, 2465.Google Scholar

  • [74]

    J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. 2013, 125, 4731.Google Scholar

  • [75]

    M. C. Stan, J. von Zamory, S. Passerini, T. Nilges, M. Winter, J. Mater. Chem. A 2013, 1, 5293.Google Scholar

  • [76]

    W. L. Roth, T. Dewitt, A. J. Smith, J. Am. Chem. Soc. 1947, 69, 2881.Google Scholar

  • [77]

    X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus, Proc. Natl. Acad. Sci. USA 2015, 112, 4523.Google Scholar

  • [78]

    J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 113, 226801.Google Scholar

  • [79]

    A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, C. Zhou, ACS Nano 2015, 9, 5618.Google Scholar

  • [80]

    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nature Photon. 2014, 8, 899.Google Scholar

  • [81]

    Z. Shen, S. Sun, W. Wang, J. Liu, Z. Li, J. C. Yu, J. Mater. Chem. A 2015, 3, 3285.Google Scholar

  • [82]

    M. Meier, R. Weihrich, Chem. Phys. Lett. 2008, 461, 38.Google Scholar

  • [83]

    W. Hönle, H. G. von Schnering, Z. Kristallogr. 1980, 153, 339.Google Scholar

  • [84]

    S. Lange, C. P. Sebastian, L. Zhang, H. Eckert, T. Nilges, Inorg. Chem. 2006, 45, 5878.Google Scholar

  • [85]

    S. Lange, T. Nilges, Z. Naturforsch. 2009, 61b, 871.Google Scholar

  • [86]

    M. Bawohl, T. Nilges, Z. Anorg. Allg. Chem. 2009, 635, 667.Google Scholar

  • [87]

    M. Bawohl, P. Schmidt, T. Nilges, Inorg. Chem. 2013, 52, 11895.Google Scholar

  • [88]

    F. Stein, M. Palm, G. Sauthoff, Intermetallics 2005, 13, 1056.Google Scholar

  • [89]

    W. B. Pearson, Acta Crystallogr. B. 1968, 24, 7.Google Scholar

  • [90]

    F. Laves, Naturwissenschaften 1939, 27, 65.Google Scholar

  • [91]

    F. Laves, H. J. Wallbaum, Z. Anorg. Allg. Chem. 1942, 250, 110.Google Scholar

  • [92]

    A. Simon, Angew. Chem. 1983, 95, 94; Angew. Chem., Int. Ed. 1983, 22, 95.Google Scholar

  • [93]

    W. Hermes, T. Harmening, R. Pöttgen, Chem. Mater. 2009, 21, 3325.Google Scholar

  • [94]

    C. Reichert, H. Kohlmann, Z. Anorg. Allg. Chem. 2011, 637, 1030.Google Scholar

  • [95]

    M. Y. Teslyuk, G. I. Oleksiv, Dopov. Akad. Nauk B 1965, 10, 1329.Google Scholar

  • [96]

    K. Cenzual, B. Chabot, E. Parthe’, J. Solid State Chem. 1987, 70, 229.Google Scholar

  • [97]

    E. I. Gladyshevskii, P. I. Kripyakevich, M. Yu. Teslyuk, Dokl. Akad. Nauk SSSR 1952, 85, 81.Google Scholar

  • [98]

    S. Linsinger, M. Eul, C. Schwickert, R. Decourt, B. Chevalier, U. Ch. Rodewald, J.-L. Bobet, R. Pöttgen, Intermetallics 2011, 10, 1579.Google Scholar

  • [99]

    P. I. Kriyakevich, E. I. Gladyshevskii, E. E. Cherkashin, E. I. Hladyshevskii, Dokl. Akad. Nauk SSSR 19 52, 82, 253.Google Scholar

  • [100]

    M. S. Sulonen, Acta Polytech. Scand. 1962, 18, 22.Google Scholar

  • [101]

    N. Eckstein, I. Krüger, F. Bachhuber, R. Weihrich, J. E. Barquera-Lozada, L. van Wüllen, T. Nilges, J. Mater. Chem. A 2015, 3, 6484.Google Scholar

About the article

Received: 2016-05-31

Accepted: 2016-08-16

Published Online: 2016-09-17

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1966.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maximilian Baumgartner, Thomas Wylezich, Franziska Baumer, Markus Pielmeier, Anna Vogel, Richard Weihrich, and Tom Nilges
Zeitschrift für anorganische und allgemeine Chemie, 2017

Comments (0)

Please log in or register to comment.
Log in