Jump to ContentJump to Main Navigation
Show Summary Details

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR increased in 2015: 2.560
Rank 8 out of 26 in category Cristallography in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198
Impact per Publication (IPP) 2015: 1.834

Online
ISSN
2196-7105
See all formats and pricing
Just Accepted

Issues

Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)

Lukas Schlicker
  • Corresponding author
  • Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universitat Berlin, Berlin, Germany
  • Email:
/ Maged F. Bekheet
  • Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universitat Berlin, Berlin, Germany
/ Aleksander Gurlo
  • Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Technische Universitat Berlin, Berlin, Germany
Published Online: 2017-01-28 | DOI: https://doi.org/10.1515/zkri-2016-1967

Abstract

Phase pure metastable indium oxyhydroxide (InOOH) with crystallite size in the range ca. 2–7 nm is synthesized by a nonaqueous solvothermal synthesis route in ethanol. The influence of synthesis parameters such as temperature, basicity (pH), synthesis time, and water content is carefully addressed. T-pH maps summarize the impact of synthesis temperature and pH and reveal that phase pure InOOH is obtained in water-free solutions at mild temperatures (150–180°C) in highly basic conditions (pH>12). Subsequent calcination of InOOH at 375–700°C in ambient air atmosphere results in metastable nanoscaled rhombohedral indium oxide (rh-In2O3). The synthesis protocol for phase pure nanocrystalline InOOH material was successfully upscaled allowing for obtaining ca. 3 g of phase-pure InOOH with a yield of ca. 78%. The upscaled InOOH and rh-In2O3 batches are now available for a detailed in-situ characterization of the mechanism of decomposition of InOOH to rh-In2O3 to c-In2O3 as well as for the characterization of the functional properties of InOOH and rh-In2O3 materials.

Keywords: indium oxide; metastable; nanocrystalline; scale-up; solvothermal synthesis

References

  • [1]

    A. Walsh, J. L. F. Da Silva, S. H. Wei, Multi-component transparent conducting oxides: progress in materials modelling. J. Phys-Condens. Mat. 2011, 23, 334210.

  • [2]

    E. Guilmeau, D. Berardan, C. Simon, A. Maignan, B. Raveau, D. O. Ovono, F. Delorme, Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys. 2009, 106, 053715.

  • [3]

    A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154.

  • [4]

    T. de Boer, M. F. Bekheet, A. Gurlo, R. Riedel, A. Moewes, Band gap and electronic structure of cubic, rhombohedral, and orthorhombic In2O3 polymorphs: experiment and theory. Phys. Rev. B 2016, 93, 155205.

  • [5]

    L. Pauling, M. D. Shappell, The crystal structure of bixbyite and the C-modification of the sesquioxides. Z. Kristallogr. 1930, 75, 128.

  • [6]

    C. T. Prewitt, R. D. Shannon, D. B. Rogers, A. W. Sleight, The C rare earth oxide-corundum transition and crystal chemistry of oxides having corundum structure. Inorg. Chem. 1969, 8, 1985.

  • [7]

    A. J. Downs, Chemistry of Aluminium, Gallium, Indium and Thallium, Springer Verlag, 2013.

  • [8]

    C. M. Q. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford, 1984.

  • [9]

    N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1985.

  • [10]

    H. Yusa, T. Tsuchiya, N. Sata, Y. Ohishi, Rh2O3(II)-type structures in Ga2O3 and In2O3 under high pressure: experiment and theory. Phys. Rev. B 2008, 77, 064107.

  • [11]

    M. Epifani, P. Siciliano, A. Gurlo, N. Barsan, U. Weimar, Ambient pressure synthesis of corundum-type In2O3. J. Am. Chem. Soc. 2004, 126, 4078.

  • [12]

    H. Saitoh, W. Utsumi, K. Aoki, Solid-phase grain growth of In2O3 at high pressures and temperatures. J. Cryst. Growth 2008, 310, 2295.

  • [13]

    H. Yusa, T. Tsuchiya, J. Tsuchiya, N. Sata, Y. Ohishi, α-Gd2S3-type structure in In2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Phys. Rev. B 2008, 78, 092107.

  • [14]

    K. Umemoto, R. M. Wentzcovitch, Effect of the d electrons on phase transitions in transition-metal sesquioxides. Phys. Chem. Miner. 2011, 38, 387.

  • [15]

    A. Walsh, C. R. A. Catlow, A. A. Sokol, S. M. Woodley, Physical properties, intrinsic defects, and phase stability of indium sesquioxide. Chem. Mater. 2009, 21, 4962.

  • [16]

    M. F. Bekheet, M. R. Schwarz, S. Lauterbach, H. J. Kleebe, P. Kroll, R. Riedel, A. Gurlo, Orthorhombic In2O3: a metastable polymorph of indium sesquioxide. Angew Chem. Int. Ed. 2013, 52, 6531.

  • [17]

    M. F. Bekheet, M. R. Schwarz, P. Kroll, A. Gurlo, Kinetic control in the synthesis of metastable polymorphs: bixbyite-to-Rh2O3(II)-to-corundum transition in In2O3. J. Solid State Chem. 2015, 229, 278.

  • [18]

    M. F. Bekheet, M. R. Schwarz, S. Lauterbach, H. J. Kleebe, P. Kroll, A. Stewart, U. Kolb, R. Riedel, A. Gurlo, In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2O3 and synthesis of corundum-type and orthorhombic In2O3 polymorphs. High Pressure Res. 2013, 33, 697.

  • [19]

    R. D. Shannon, New high pressure phases having corundum structure. Solid State Commun. 1966, 4, 629.

  • [20]

    A. Gurlo, D. Dzivenko, P. Kroll, R. Riedel, High-pressure high-temperature synthesis of Rh2O3-II-type In2O3 polymorph. Phys. Status Solidi-R. 2008, 2, 269.

  • [21]

    A. Gurlo, P. Kroll, R. Riedel, Metastability of corundum-type In2O3. Chem. – Eur. J. 2008, 14, 3306.

  • [22]

    B. Garcia-Domene, J. A. Sans, O. Gomis, F. J. Manjon, H. M. Ortiz, D. Errandonea, D. Santamaria-Perez, D. Martinez-Garcia, R. Vilaplana, A. L. J. Pereira, A. Morales-Garcia, P. Rodriguez-Hernandez, A. Munoz, C. Popescu, A. Segura, Pbca-Type In2O3: the high-pressure post-corundum phase at room temperature. J. Phys. Chem. C 2014, 118, 20545.

  • [23]

    A. Sano-Furukawa, T. Yagi, T. Okada, H. Gotou, T. Kikegawa, Compression behaviors of distorted rutile-type hydrous phases, MOOH (M=Ga, In, Cr) and CrOOD. Phys. Chem. Miner. 2012, 39, 375.

  • [24]

    J. Tsuchiya, T. Tsuchiya, A. Sano, E. Ohtani, First principles prediction of new high-pressure phase of InOOH. J. Miner. Petrol. Sci. 2008, 103, 116.

  • [25]

    A. Sano, T. Yagi, T. Okada, H. Gotou, E. Ohtani, J. Tsuchiya, T. Kikegawa, X-ray diffraction study of high pressure transition in InOOH. J. Miner. Petrol. Sci. 2008, 103, 152.

  • [26]

    L. Schlicker, R. Riedel, A. Gurlo, Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation. Nanotechnology 2009, 20, 495702.

  • [27]

    G. Miehe, S. Lauterbach, H. J. Kleebe, A. Gurlo, Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies. J. Solid State Chem. 2013, 198, 364.

  • [28]

    D. B. Yu, D. B. Wang, Y. T. Qian, Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. J. Solid State Chem. 2004, 177, 1230.

  • [29]

    A. Oprea, A. Gurlo, N. Barsan, U. Weimar, Transport and gas sensing properties of In2O3 nanocrystalline thick films: a hall effect based approach. Sensor. Actuat. B Chem. 2009, 139, 322.

  • [30]

    J. F. Yin, H. Q. Cao, Synthesis and photocatalytic activity of single-crystalline hollow rh-In2O3 nanocrystals. Inorg. Chem. 2012, 51, 6529.

  • [31]

    E.-M. Köck, M. Kogler, M. Grünbacher, C. Zhuo, R. Thalinger, D. Schmidmair, L. Schlicker, A. Gurlo, S. Penner, Metastable corundum-type In2O3: phase stability, reduction properties, and catalytic characterization. J. Phys. Chem. C 2016, 120, 15272.

  • [32]

    T. J. Yan, X. X. Wang, J. L. Long, H. X. Lin, R. S. Yuan, W. X. Dai, Z. H. Li, X. Z. Fu, Controlled preparation of In2O3, InOOH and In(OH)3 via a one-pot aqueous solvothermal route. New J. Chem. 2008, 32, 1843.

  • [33]

    G. Frank, R. Olazcuaga, A. Rabenau, Occurrence of corundum-type indium (III) oxide under ambient conditions. Inorg. Chem. 1977, 16, 1251.

  • [34]

    B.-C. Kim, J.-J. Kim, S.-H. Chang, Synthesis of cubic and rhombohedral phased nanocrystalline SnO2 doped In2O3 [ITO] powders with coprecipitation method. Mat. Res. Soc. Symp. Proc. 2000, 581, 27.

  • [35]

    D. Chu, Y. P. Zeng, D. Jiang, Z. Ren, Tuning the crystal structure and magnetic properties of Fe doped In2O3 nanocrystals. Appl. Phys. Lett. 2007, 91, 262503.

  • [36]

    R. Roy, M. W. Shafer, Phases present and phase equilibrium in the system In2O3-H2O. J. Phys. Chem. 1954, 58, 372.

  • [37]

    A. N. Christensen, N. C. Broch, Hydrothermal investigation of systems In2O3-H2O-Na2O and In2O3-D2O-Na2O. Crystal structure of rhombohedral In2O3 and of In(OH)3. Acta Chem. Scand. 1967, 21, 1046.

  • [38]

    M. S. Lehmann, F. K. Larsen, F. R. Poulsen, A. N. Christensen, S. E. Rasmussen, Neutron and X-ray crystallographic studies on indium oxide hydroxide. Acta Chem. Scand. 1970, 24, 1662.

  • [39]

    B. N. Litvin, L. I. Ivanova, Possible hydrothermal synthesis of In2O3 crystals. Sov. Phys. Crystallogr. 1970, 14, 988.

  • [40]

    J. Liebertz, Der Einfluss von Loesungsgenossen auf die Einstellung des Gleichgewichts InOOH/In2O3 unter hydrothermalen Bedingungen. Berich Bunsen Gesell. 1966, 70, 1051.

  • [41]

    Q. B. Sun, Y. P. Zeng, D. L. Jiang, Preparation and magnetic-optical properties of metastable Ni2+ doped rhombohedral indium oxide nanorods. Crystengcomm. 2012, 14, 713.

  • [42]

    J. Yin, H. Cao, Synthesis and photocatalytic activity of single-crystalline hollow rh-In2O3 Nanocrystals. Inorg. Chem. 2012, 51, 6529.

  • [43]

    J. Rodriguez-Carvajal, presented in part at the Collected Abstract of Powder Diffraction Meeting, Toulouse, France, 1990.

  • [44]

    A. Doran, L. Schlicker, C. Beavers, M. F. Bekheet, A. Gurlo, Compact low power infrared tube furnace for X-ray powder diffraction. Rev. Sci. Instrum. 2017, 88, 013903.

  • [45]

    J. Murto, in The Hydroxyl Group, (Ed. S. Patai) John Wiley & Sons, Ltd., ch. 20, Hydroxide-alkoxide ion equilibria and their influence on chemical reactions, p. 1087, 1971.

  • [46]

    O. I. Micic, B. Cercek, Diffusion-controlled reactions in mixed-solvents. J. Phys. Chem. 1977, 81, 833.

  • [47]

    M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J. Ba, N. Pinna, Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J. Sol-Gel Sci. Techn. 2006, 40, 259.

About the article

Received: 2016-06-02

Accepted: 2016-08-29

Published Online: 2017-01-28

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1967. Export Citation

Comments (0)

Please log in or register to comment.
Log in