Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)


The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms

Sergej Springer
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
/ Niclas Heidenreich
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
/ Norbert Stock
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
/ Leo van Wüllen
  • Institut für Physik, Universität Augsburg, Universitätsstrasse 1, 86159 Augsburg, Germany
/ Klaus Huber
  • Department Chemie, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
/ Stefano Leoni
  • School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
/ Michael Wiebcke
  • Corresponding author
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
  • Email:
Published Online: 2016-09-17 | DOI: https://doi.org/10.1515/zkri-2016-1968


In this report, we summarize our theoretical and experimental investigations on the zeolitic imidazolate framework (ZIF) system [Zn(dcim)2] (dcim=4,5-dichloroimidazolate) that have been published recently. These comprise: (1) a theoretical study on hypothetical conformational [Zn(dcm)2]-SOD polymorphs with the same underlying sodalite (SOD) topology but distinct dcim linker orientations, (2) a synthetic work that resulted in the experimental realization of the most stable predicted (trigonal) SOD-type framework conformer and improved synthetic protocols for a previously discovered cubic SOD-type material, (3) a detailed structural analysis of the trigonal and cubic SOD-type materials, (4) a comparative characterization of the SOD-type materials by gas physisorption measurements, (5) a synthetic work that resulted in the discovery of a complete series of intermediate frameworks with the trigonal and cubic SOD-type materials as the end members, and (6) time-resolved in-situ light and stopped-flow synchrotron small-angle and wide-angle X-ray scattering experiments on the rapid crystallization of the RHO-type polymorph (ZIF-71). In addition, we report as yet unpublished work, concerning time-resolved in-situ angular-dispersive synchrotron X-ray diffraction experiments on RHO-/SOD-type phase selection via the coordination modulation approach during competitive formation of the RHO-type and SOD-type materials.

Keywords: crystallization mechanism; density functional theory; in-situ investigations; polymorphism; zeolitic imidazolate framework


  • [1]

    C. A. Schröder, S. Saha, K. Huber, S. Leoni, M. Wiebcke, Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. Z. Kristallogr. 2014, 229, 807.Google Scholar

  • [2]

    J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001.Google Scholar

  • [3]

    A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58.Google Scholar

  • [4]

    J.-F. Yao, H.-T. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470.Google Scholar

  • [5]

    D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502.Google Scholar

  • [6]

    W. Cai, C.-C. Chu, G. Liu, Y.-X. Wáng, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806.Google Scholar

  • [7]

    B.-L. Chen, Z.-X. Yang, Y.-Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem A 2014, 2, 16811.Google Scholar

  • [8]

    N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs), Routes to various MOF topologies, morphologies, and composites. Chem. Soc. Rev. 2012, 112, 933.Google Scholar

  • [9]

    M. G. Goesten, F. Kapteijn, J. Gascon, Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal-organic frameworks. CrystEngComm 2013, 15, 9249.Google Scholar

  • [10]

    I. A. Baburin, S. Leoni, The energy landscape of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. J. Mater. Chem. 2012, 22, 10152.Google Scholar

  • [11]

    R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm 2013, 15, 9603.Google Scholar

  • [12]

    J. A. Gee, D. S. Sholl, Characterization of the thermodynamic stability of solvated metal-organic polymorphs using molecular simulations. J. Phys. Chem. C 2013, 117, 20636.Google Scholar

  • [13]

    L. Bouessel du Bourg, A. U. Ortiz, A. Boutin, F.-X. Coudert, Thermal and mechanical stability of zeolitic imidazolate framework polymorphs. APL Mater. 2014, 2, 124110.Google Scholar

  • [14]

    I. H. Lim, W. Schrader, F. Schüth: Insights into the molecular assembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater. 2015, 27, 3088.Google Scholar

  • [15]

    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130.Google Scholar

  • [16]

    J. P. Patterson, P. Abellan, M. S. Denny Jr., C. Park, N. D. Browning, S. M. Cohen, J. E. Evans, N. C. Gianneschi, Observing the growth of metal-organic frameworks by in situ liguid cell transmission electron microscopy. J. Am. Chem. Soc. 2015, 137, 7322.Google Scholar

  • [17]

    J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-Ray scattering. Angew. Chem. Int. Ed. 2011, 50, 8067.Google Scholar

  • [18]

    Z.-X. Low, J.-F. Yao, Q. Liu, M. He, Z.-Y. Wang, A. K. Suresh, J. Bellare, H.-T. Wang, Crystal transformation in a Zeolitic-Imidazolate framework. Cryst. Growth Des. 2014, 14, 6589.Google Scholar

  • [19]

    K. Self, M. Telfer, H. F. Greer, W. Z. Zhou, Revered crystal growth of RHO zeolitic imidazolate framework (ZIF). Chem.- Eur. J. 2015, 21, 19090.Google Scholar

  • [20]

    S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wüllen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm 2016, 18, 2477.Google Scholar

  • [21]

    S. Saha, S. Springer, M. E. Schweinefuß, D. Pontoni, M. Wiebcke, K. Huber, Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering. Cryst. Growth Des. 2016, 16, 2002.Google Scholar

  • [22]

    M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans. 2014, 43, 3528.Google Scholar

  • [23]

    R. Sabatini, T. Gorni, S. de Gironcoli, Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B: Condens. Matter 2013, 87, 041108.Google Scholar

  • [24]

    International Zeolite Association, Database of Zeolite structures. http://www.iza-structure.org/databases.

  • [25]

    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939.Google Scholar

  • [26]

    W. Depmeier, The sodalite family – a simple but versatile framework structure. Rev. Mineral. Geochem. 2005, 57, 203.Google Scholar

  • [27]

    X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557.Google Scholar

  • [28]

    K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA 2006, 103, 10186.Google Scholar

  • [29]

    S. A. Moggach, T. D. Bennett, A. K. Cheetham, The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure Phase at 1.47 GPa. Angew. Chem. Int. Ed. 2009, 48, 7087.Google Scholar

  • [30]

    D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, Opening the gate: framework fexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 2011, 133, 8900.Google Scholar

  • [31]

    J.-P. Zhang, A.-X. Zhu, X.-M. Chen, Single-crystal X-ray diffraction and Raman spectroscopy studies of the isobaric N2 adsorption in SOD-type metal-organic zeolites. Chem. Commun. 2012, 48, 11395.Google Scholar

  • [32]

    X-C. Huang, J.-P. Zhang, X.-M. Chen, [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 2003, 48, 1531.Google Scholar

  • [33]

    P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, S.Redfern, phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem. Mater. 2014, 26, 1767.Google Scholar

  • [34]

    Y. Du, B. Wooler, M. Nines, P. Kortunov, C. S. Pauer, J. Zengel, S. C. Weston, P. I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: elucidation and prediction of the thermodynamics of transitions. J. Am. Chem. Soc. 2015, 137, 13603.Google Scholar

  • [35]

    K. Knorr, C. M. Braunbarth, G. van der Goor, P. Behrens, C. Griewatsch, W. Depmeier, High-pressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24] – neutron and X-ray powder diffraction experiments. Solid State Commun. 2000, 503, 114.Google Scholar

  • [36]

    R. S. P. King, S. E. Dann, M. R. J. Elsegood, P. F. Kelly, R. J. Mortimer, The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem.- Eur. J. 2009, 15, 5441.Google Scholar

  • [37]

    F.-X. Coudert, Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905.Google Scholar

  • [38]

    I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm 2010, 12, 2809.Google Scholar

  • [39]

    A.-X. Zhu, R.-B. Lin, X.-L. Qi, Y. Liu, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous Mesoporous Mater. 2012, 157, 42.Google Scholar

  • [40]

    D. S. Sholl, R. P. Lively, Defects in metal-organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 2015, 6, 3437.Google Scholar

  • [41]

    C. Zhang, C. Han, D. S. Sholl, J. R. Schmidt, Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7, 459.Google Scholar

  • [42]

    Z. Fang, B. Bueken, D. E. de Vos, R. A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 2015, 54, 7234.Google Scholar

  • [43]

    S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. Nieto-Draghi, N. Bats, D. Farrusseng, Guest-induced gate-opening of a zeolitic imidazolate framework. New J. Chem. 2011, 35, 546.Google Scholar

  • [44]

    M. T. Wharmby, S. Henke, T. D. Bennett, S. R. Bajpe, I. Schwedler, S. P. Thompson, F. Gozzo, P. Simoncic, C. Mellot-Draznieks, H. Tao, Y. Yue, A. K. Cheetha, Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed. 2015, 54, 6447.Google Scholar

  • [45]

    N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 2011, 50, 2014.Google Scholar

  • [46]

    E. Antonova, B. Seidlhofer, J. Wang, M. Hinz, W. Bensch, Controlling Nucleation and crystal growth of a distinct polyoxovanadate cluster: an in situ energy dispersive X-ray diffraction study under solvothermal conditions. Chem. Eur. J. 2012, 18, 15316.Google Scholar

  • [47]

    H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton, In situ observation of successive crystallizations and metastable intermediates in the formation of metal-organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 2012.Google Scholar

  • [48]

    K. M. O. Jensen, C. Tyrsted, M. Bremholm, B. B. Iversen, In situ studies of solvothermal synthesis of energy materials. ChemSusChem 2014, 7, 1594.Google Scholar

  • [49]

    S. Springer, A. Satalov, J. Lippke, M. Wiebcke, Nanocrystals and nanomaterials of isoreticular zeolitic imidazoate frameworsk. Microporous Mesoporous Mater. 2015, 216, 161.Google Scholar

  • [50]

    J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans. 2005, 3681.Google Scholar

  • [51]

    X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolates based on the ligand orientation. Cryst. Growth Des. 2006, 5, 1194.Google Scholar

  • [52]

    J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Sov. Rev. 2009, 38, 2385.Google Scholar

  • [53]

    A. F. Gualtieri, Synthesis of sodium zeolites from natural halloysite. Phys. Chem. Miner. 2001, 28, 719.Google Scholar

  • [54]

    J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009, 21, 1410.Google Scholar

  • [55]

    S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030.Google Scholar

  • [56]

    T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys. 2012, 14, 511.Google Scholar

  • [57]

    A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235.Google Scholar

About the article

Received: 2016-06-02

Accepted: 2016-08-15

Published Online: 2016-09-17

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1968.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in