Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)

Issues

The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms

Sergej Springer
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niclas Heidenreich
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Norbert Stock
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leo van Wüllen / Klaus Huber / Stefano Leoni
  • School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Wiebcke
  • Corresponding author
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-17 | DOI: https://doi.org/10.1515/zkri-2016-1968

Abstract

In this report, we summarize our theoretical and experimental investigations on the zeolitic imidazolate framework (ZIF) system [Zn(dcim)2] (dcim=4,5-dichloroimidazolate) that have been published recently. These comprise: (1) a theoretical study on hypothetical conformational [Zn(dcm)2]-SOD polymorphs with the same underlying sodalite (SOD) topology but distinct dcim linker orientations, (2) a synthetic work that resulted in the experimental realization of the most stable predicted (trigonal) SOD-type framework conformer and improved synthetic protocols for a previously discovered cubic SOD-type material, (3) a detailed structural analysis of the trigonal and cubic SOD-type materials, (4) a comparative characterization of the SOD-type materials by gas physisorption measurements, (5) a synthetic work that resulted in the discovery of a complete series of intermediate frameworks with the trigonal and cubic SOD-type materials as the end members, and (6) time-resolved in-situ light and stopped-flow synchrotron small-angle and wide-angle X-ray scattering experiments on the rapid crystallization of the RHO-type polymorph (ZIF-71). In addition, we report as yet unpublished work, concerning time-resolved in-situ angular-dispersive synchrotron X-ray diffraction experiments on RHO-/SOD-type phase selection via the coordination modulation approach during competitive formation of the RHO-type and SOD-type materials.

Keywords: crystallization mechanism; density functional theory; in-situ investigations; polymorphism; zeolitic imidazolate framework

References

  • [1]

    C. A. Schröder, S. Saha, K. Huber, S. Leoni, M. Wiebcke, Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. Z. Kristallogr. 2014, 229, 807.Google Scholar

  • [2]

    J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001.Google Scholar

  • [3]

    A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58.Google Scholar

  • [4]

    J.-F. Yao, H.-T. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev. 2014, 43, 4470.Google Scholar

  • [5]

    D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502.Google Scholar

  • [6]

    W. Cai, C.-C. Chu, G. Liu, Y.-X. Wáng, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806.Google Scholar

  • [7]

    B.-L. Chen, Z.-X. Yang, Y.-Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem A 2014, 2, 16811.Google Scholar

  • [8]

    N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs), Routes to various MOF topologies, morphologies, and composites. Chem. Soc. Rev. 2012, 112, 933.Google Scholar

  • [9]

    M. G. Goesten, F. Kapteijn, J. Gascon, Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal-organic frameworks. CrystEngComm 2013, 15, 9249.Google Scholar

  • [10]

    I. A. Baburin, S. Leoni, The energy landscape of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. J. Mater. Chem. 2012, 22, 10152.Google Scholar

  • [11]

    R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm 2013, 15, 9603.Google Scholar

  • [12]

    J. A. Gee, D. S. Sholl, Characterization of the thermodynamic stability of solvated metal-organic polymorphs using molecular simulations. J. Phys. Chem. C 2013, 117, 20636.Google Scholar

  • [13]

    L. Bouessel du Bourg, A. U. Ortiz, A. Boutin, F.-X. Coudert, Thermal and mechanical stability of zeolitic imidazolate framework polymorphs. APL Mater. 2014, 2, 124110.Google Scholar

  • [14]

    I. H. Lim, W. Schrader, F. Schüth: Insights into the molecular assembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater. 2015, 27, 3088.Google Scholar

  • [15]

    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130.Google Scholar

  • [16]

    J. P. Patterson, P. Abellan, M. S. Denny Jr., C. Park, N. D. Browning, S. M. Cohen, J. E. Evans, N. C. Gianneschi, Observing the growth of metal-organic frameworks by in situ liguid cell transmission electron microscopy. J. Am. Chem. Soc. 2015, 137, 7322.Google Scholar

  • [17]

    J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-Ray scattering. Angew. Chem. Int. Ed. 2011, 50, 8067.Google Scholar

  • [18]

    Z.-X. Low, J.-F. Yao, Q. Liu, M. He, Z.-Y. Wang, A. K. Suresh, J. Bellare, H.-T. Wang, Crystal transformation in a Zeolitic-Imidazolate framework. Cryst. Growth Des. 2014, 14, 6589.Google Scholar

  • [19]

    K. Self, M. Telfer, H. F. Greer, W. Z. Zhou, Revered crystal growth of RHO zeolitic imidazolate framework (ZIF). Chem.- Eur. J. 2015, 21, 19090.Google Scholar

  • [20]

    S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wüllen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm 2016, 18, 2477.Google Scholar

  • [21]

    S. Saha, S. Springer, M. E. Schweinefuß, D. Pontoni, M. Wiebcke, K. Huber, Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering. Cryst. Growth Des. 2016, 16, 2002.Google Scholar

  • [22]

    M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans. 2014, 43, 3528.Google Scholar

  • [23]

    R. Sabatini, T. Gorni, S. de Gironcoli, Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B: Condens. Matter 2013, 87, 041108.Google Scholar

  • [24]

    International Zeolite Association, Database of Zeolite structures. http://www.iza-structure.org/databases.

  • [25]

    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939.Google Scholar

  • [26]

    W. Depmeier, The sodalite family – a simple but versatile framework structure. Rev. Mineral. Geochem. 2005, 57, 203.Google Scholar

  • [27]

    X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557.Google Scholar

  • [28]

    K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA 2006, 103, 10186.Google Scholar

  • [29]

    S. A. Moggach, T. D. Bennett, A. K. Cheetham, The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure Phase at 1.47 GPa. Angew. Chem. Int. Ed. 2009, 48, 7087.Google Scholar

  • [30]

    D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, Opening the gate: framework fexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 2011, 133, 8900.Google Scholar

  • [31]

    J.-P. Zhang, A.-X. Zhu, X.-M. Chen, Single-crystal X-ray diffraction and Raman spectroscopy studies of the isobaric N2 adsorption in SOD-type metal-organic zeolites. Chem. Commun. 2012, 48, 11395.Google Scholar

  • [32]

    X-C. Huang, J.-P. Zhang, X.-M. Chen, [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 2003, 48, 1531.Google Scholar

  • [33]

    P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, S.Redfern, phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem. Mater. 2014, 26, 1767.Google Scholar

  • [34]

    Y. Du, B. Wooler, M. Nines, P. Kortunov, C. S. Pauer, J. Zengel, S. C. Weston, P. I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: elucidation and prediction of the thermodynamics of transitions. J. Am. Chem. Soc. 2015, 137, 13603.Google Scholar

  • [35]

    K. Knorr, C. M. Braunbarth, G. van der Goor, P. Behrens, C. Griewatsch, W. Depmeier, High-pressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24] – neutron and X-ray powder diffraction experiments. Solid State Commun. 2000, 503, 114.Google Scholar

  • [36]

    R. S. P. King, S. E. Dann, M. R. J. Elsegood, P. F. Kelly, R. J. Mortimer, The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem.- Eur. J. 2009, 15, 5441.Google Scholar

  • [37]

    F.-X. Coudert, Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905.Google Scholar

  • [38]

    I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm 2010, 12, 2809.Google Scholar

  • [39]

    A.-X. Zhu, R.-B. Lin, X.-L. Qi, Y. Liu, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous Mesoporous Mater. 2012, 157, 42.Google Scholar

  • [40]

    D. S. Sholl, R. P. Lively, Defects in metal-organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 2015, 6, 3437.Google Scholar

  • [41]

    C. Zhang, C. Han, D. S. Sholl, J. R. Schmidt, Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7, 459.Google Scholar

  • [42]

    Z. Fang, B. Bueken, D. E. de Vos, R. A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 2015, 54, 7234.Google Scholar

  • [43]

    S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. Nieto-Draghi, N. Bats, D. Farrusseng, Guest-induced gate-opening of a zeolitic imidazolate framework. New J. Chem. 2011, 35, 546.Google Scholar

  • [44]

    M. T. Wharmby, S. Henke, T. D. Bennett, S. R. Bajpe, I. Schwedler, S. P. Thompson, F. Gozzo, P. Simoncic, C. Mellot-Draznieks, H. Tao, Y. Yue, A. K. Cheetha, Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed. 2015, 54, 6447.Google Scholar

  • [45]

    N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 2011, 50, 2014.Google Scholar

  • [46]

    E. Antonova, B. Seidlhofer, J. Wang, M. Hinz, W. Bensch, Controlling Nucleation and crystal growth of a distinct polyoxovanadate cluster: an in situ energy dispersive X-ray diffraction study under solvothermal conditions. Chem. Eur. J. 2012, 18, 15316.Google Scholar

  • [47]

    H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton, In situ observation of successive crystallizations and metastable intermediates in the formation of metal-organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 2012.Google Scholar

  • [48]

    K. M. O. Jensen, C. Tyrsted, M. Bremholm, B. B. Iversen, In situ studies of solvothermal synthesis of energy materials. ChemSusChem 2014, 7, 1594.Google Scholar

  • [49]

    S. Springer, A. Satalov, J. Lippke, M. Wiebcke, Nanocrystals and nanomaterials of isoreticular zeolitic imidazoate frameworsk. Microporous Mesoporous Mater. 2015, 216, 161.Google Scholar

  • [50]

    J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans. 2005, 3681.Google Scholar

  • [51]

    X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolates based on the ligand orientation. Cryst. Growth Des. 2006, 5, 1194.Google Scholar

  • [52]

    J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Sov. Rev. 2009, 38, 2385.Google Scholar

  • [53]

    A. F. Gualtieri, Synthesis of sodium zeolites from natural halloysite. Phys. Chem. Miner. 2001, 28, 719.Google Scholar

  • [54]

    J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009, 21, 1410.Google Scholar

  • [55]

    S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030.Google Scholar

  • [56]

    T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys. 2012, 14, 511.Google Scholar

  • [57]

    A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235.Google Scholar

About the article

Received: 2016-06-02

Accepted: 2016-08-15

Published Online: 2016-09-17

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1968.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. Heidenreich, U. Rütt, M. Köppen, A. Ken Inge, S. Beier, A.-C. Dippel, R. Suren, and N. Stock
Review of Scientific Instruments, 2017, Volume 88, Number 10, Page 104102

Comments (0)

Please log in or register to comment.
Log in