Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3


Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications

Marcus Weber
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maik Schlesinger
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Walther
  • Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Zahn
  • Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph A. Schalley
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Mehring
  • Corresponding author
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-12 | DOI: https://doi.org/10.1515/zkri-2016-1970


Investigations on bismuth oxido clusters are focused on the nucleation and growth processes towards large cluster motifs and their stability in the gas phase, which has been studied by electrospray ionization mass spectrometry (ESI-MS), molecular dynamics (MD) simulations and X-ray scattering experiments evaluated by pair distribution function (PDF) analysis. The formation of metastable bismuth(III) oxides was obtained by hydrolysis of polynuclear bismuth oxido clusters and subsequent thermal treatment under non-equilibrium conditions. Temperature dependent PXRD and Raman spectroscopic experiments gave insight into the formation process of metastable β-Bi2O3 starting from the amorphous hydrolysis products as-obtained from polynuclear bismuth oxido clusters. Furthermore, PXRD as well as energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of several new ternary bismuth(III) rich oxides such as Bi14O20(MO4) (M=S, Se) as-obtained by hydrolysis of bismuth oxido clusters in the presence of diverse additives.

Keywords: bismuth oxido cluster; bismuth(III) oxide polymorphs; ESI-MS; hydrolysis; metastable


  • [1]

    P. J. Sadler, H. Y. Li, H. Z. Sun, Coordination chemistry of metals in medicine: target sites for bismuth. Coord. Chem. Rev. 1999, 1856, 689–709.Google Scholar

  • [2]

    H. Ippen, Bismuth subnitrate – useful or obsolete. Hautarzt 1997, 48, 424–424.Google Scholar

  • [3]

    J. R. Lambert, P. Midolo, The actions of bismuth in the treatment of helicobacter pylori infection. Aliment. Pharm. Ther. 1997, 11, 27–33.CrossrefGoogle Scholar

  • [4]

    G. G. Briand, N. Burford, Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 1999, 99, 2601–2657.CrossrefGoogle Scholar

  • [5]

    R. G. Ge, H. Z. Sun, Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res. 2007, 40, 267–274.CrossrefGoogle Scholar

  • [6]

    J. Boertz, L. M. Hartmann, M. Sulkowski, J. Hippler, F. Mosel, R. A. Diaz-Bone, K. Michalke, A. W. Rettenmeier, A. V. Hirner, Determination of trimethylbismuth in the human body after ingestion of colloidal bismuth subcitrate. Drug Metab. Dispos. 2009, 37, 352–358.CrossrefGoogle Scholar

  • [7]

    K. Michalke, A. Schmidt, B. Huber, J. Meyer, M. Sulkowski, A. V. Hirner, J. Boertz, F. Mosel, P. Dammann, G. Hilken, H. J. Hedrich, M. Dorsch, A. W. Rettenmeier, R. Hensel, Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl. Environ. Microbiol. 2008, 74, 3069–3075.CrossrefGoogle Scholar

  • [8]

    D. Figueroaquintanilla, E. Salazarlindo, B. Sack, R. Leonbarua, S. Sarabiaarce, M. Campossanchez, E. Eyzaguirremaccan, A controlled trial of bismuth subsalicylate in infants with acute watery diarrheal disease. N. Engl. J. Med. 1993, 328, 1653–1658.CrossrefGoogle Scholar

  • [9]

    L. A. Tillman, F. M. Drake, J. S. Dixon, J. R. Wood, Safety of bismuth in the treatment of gastrointestinal diseases. Aliment. Pharm. Ther. 1996, 10, 459–467.CrossrefGoogle Scholar

  • [10]

    H. Z. Sun, Biological chemistry of arsenic, antimony and bismuth, Wiley, Hong Kong, 2011.Google Scholar

  • [11]

    V. Fruth, M. Popa, D. Berger, R. Ramer, A. Gartner, A. Ciulei, A. Zaharescu, Deposition and characterisation of bismuth oxide thin films. J. Eur. Ceram. Soc. 2005, 25, 2171–2174.CrossrefGoogle Scholar

  • [12]

    P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179–196.CrossrefGoogle Scholar

  • [13]

    L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480–485.Google Scholar

  • [14]

    S. Anandan, G. J. Lee, P. K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Ind. Eng. Chem. Res. 2010, 49, 9729–9737.CrossrefGoogle Scholar

  • [15]

    K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater. 2010, 22, 3079–3085.CrossrefGoogle Scholar

  • [16]

    A. Cabot, A. Marsal, J. Arbiol, J. R. Morante. Bi2O3 as a selective sensing material for NO detection. Sens. Actuators, B. 2004, 99, 74–89.CrossrefGoogle Scholar

  • [17]

    T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J. P. Jolivet, Bi2O3, BiVO4, and Bi2WO6 impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 2011, 115, 5657–5666.CrossrefGoogle Scholar

  • [18]

    C. L. Wu, L. Shen, Q. L. Huang, Y. C. Zhang, Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett. 2011, 65, 1134–1136.CrossrefGoogle Scholar

  • [19]

    M. Mehring, From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. 2007, 251, 974–1006.CrossrefGoogle Scholar

  • [20]

    J. Ma, L. Z. Zhang, Y. H. Wang, S. L. Lei, X. B. Luo, S. H. Chen, G. S. Zeng, J. P. Zou, S. L. Luo, C. T. Au, Mechanism of 2,4-dinitrophenol photocatalytic degradation by Zeta-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem. Eng. J. 2014, 251, 371–380.CrossrefGoogle Scholar

  • [21]

    T. Atou, H. Faqir, M. Kikuchi, H. Chiba, Y. Syono, A new high-pressure phase of bismuth oxide. Mater. Res. Bull. 1998, 33, 289–292.CrossrefGoogle Scholar

  • [22]

    G. Gattow, H. Fricke, Über Wismutoxide. IV. Beitrag zu den binären Systemen des Bi2O3 mit SiO2, GeO2 und SnO2. Z. Anorg. Allg. Chem. 1963, 324, 287–296.CrossrefGoogle Scholar

  • [23]

    L. G. Sillén, X-ray studies on bismuth trioxide. Ark. Kem. Mineral. Geol. 1937, 12A, 1–15.Google Scholar

  • [24]

    B. Aurivillius, L. G. Sillen, Polymorphy of bismuth trioxide. Nature 1945, 155, 305–306.CrossrefGoogle Scholar

  • [25]

    W. Schumb, E. J. Rittner, Polymorphism of bismuth trioxide. J. Am. Chem. Soc. 1943, 65, 1055–1060.CrossrefGoogle Scholar

  • [26]

    L. Zhou, W. Z. Wang, H. L. Xu, S. M. Sun, M. Shang, Bi2O3 hierarchical nanostructures controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J. 2009, 15, 1776–1782.CrossrefGoogle Scholar

  • [27]

    H. H. Jing, X. Q. Chen, X. Y. Jiang, Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems. Micro Nano Lett. 2012, 7, 357–359.CrossrefGoogle Scholar

  • [28]

    Y. Wang, Y. L. Li, Metastable gamma-Bi2O3 tetrahedra: phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J. Colloid Interf. Sci. 2015, 454, 238–244.CrossrefGoogle Scholar

  • [29]

    F. Lazarini, Crystal-Structure of a bismuth basic nitrate, Bi6O5(OH)3(NO3)5.3H2O. Acta Cryst. B. 1978, 34, 3169–3173.CrossrefGoogle Scholar

  • [30]

    F. Lazarini, Bismuth basic nitrate Bi6(H2O)(NO3)O4(OH)4(NO3)5. Acta Cryst. B. 1979, 35, 448–450.CrossrefGoogle Scholar

  • [31]

    B. Sundvall, Crystal and molecular-structure of tetraoxo-hydroxobismuth(III) nitrate monohydrate, Bi6O4(HO)4(NO3)6.H2O. Acta Chem. Scand. A 1979, 33, 219–224.Google Scholar

  • [32]

    P. C. Andrews, G. B. Deacon, C. M. Forsyth, P. C. Junk, I. Kumar, M. Maguire, Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. Angew. Chem., Int. Ed. 2006, 45, 5638–5642.CrossrefGoogle Scholar

  • [33]

    L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffer, H. R. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J. 2011, 17, 6985–6990.CrossrefGoogle Scholar

  • [34]

    L. Miersch, T. Rüffer, M. Schlesinger, H. Lang, M. Mehring, Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates. Inorg. Chem. 2012, 51, 9376–9384.CrossrefGoogle Scholar

  • [35]

    A. Zahariev, N. Kaloyanov, C. Girginov, V. Parvanova, Synthesis and thermal decomposition of [Bi6O6(OH)2](NH2C6H4SO3)4. Thermochim. Acta 2012, 528, 85–89.CrossrefGoogle Scholar

  • [36]

    L. W. Zimmermann, T. Schleid, A basic bismuth(III) dodecahydro-closo-dodecaborate hydrate: [Bi6O4(OH)4][B12H12]3.10H2O. Z. Anorg. Allg. Chem. 2011, 637, 1903–1908.CrossrefGoogle Scholar

  • [37]

    B. Sundvall, Crystal-structure of tetraoxotetrahydroxohexa-bismuth(III) perchlorate heptahydrate, Bi6O4(HO)4(ClO4)6.7H2O – an X-ray and neutron-diffraction study. Inorg. Chem. 1983, 22, 1906–1912.CrossrefGoogle Scholar

  • [38]

    L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem. 2010, 4763–4769.Google Scholar

  • [39]

    L. Miersch, T. Rüffer, M. Mehring, Organic-inorganic hybrid materials starting from the novel nanoscaled bismuth oxido methacrylate cluster [Bi38O45(OMc)24(DMSO)9].2DMSO.7H2O. Chem. Commun. 2011, 47, 6353–6355.CrossrefGoogle Scholar

  • [40]

    L. Wrobel, L. Miersch, M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, The bismuth hydrogen sulfate [Bi2(SO4)2(dmso)8](HSO4)2. Z. Anorg. Allg. Chem. 2014, 640, 1431–1436.Google Scholar

  • [41]

    M. Schlesinger, L. Miersch, T. Rüffer, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters, [Bi38O45(OMc)22(C8H7SO3)2(DMSO)6(H2O)1.5].2.5H2O and [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)].DMSO.2H2O. Main Group Met. Chem. 2013, 36, 11–19.Google Scholar

  • [42]

    D. Sattler, M. Schlesinger, M. Mehring, C. A. Schalley, Mass spectrometry and gas-phase chemistry of bismuth-oxido clusters. ChemPlusChem 2013, 78, 1005–1014.CrossrefGoogle Scholar

  • [43]

    L. Miersch, Synthese und Charakterisierung neuartiger Bismutoxido-Cluster als molekulare Vorstufen für organisch-anorganische Hybridmaterialien. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany 2012.Google Scholar

  • [44]

    D. Mansfeld, M. Mehring, M. Schürmann, From a monomeric bismuth silanolate to a molecular bismuth oxo cluster: [Bi22O26(OSiMe2tBu)14]. Angew. Chem., Int. Ed. 2005, 44, 245–249.CrossrefGoogle Scholar

  • [45]

    D. Mansfeld, L. Miersch, T. Rüffer, D. Schaarschmidt, H. Lang, T. Böhle, R. W. Troff, C. A. Schalley, J. Müller, M. Mehring, From {Bi22O26} to chiral ligand-protected {Bi38O45}-based bismuth oxido clusters. Chem. Eur. J. 2011, 17, 14805–14810.CrossrefGoogle Scholar

  • [46]

    M. Schlesinger, Über nanoskalige Bismutoxidocluster zu (metastabilen) Polymorphen des Bismut(III)-oxids und deren photokatalytische Aktivität. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany 2013.Google Scholar

  • [47]

    N. Henry, M. Evain, P. Deniard, S. Jobic, F. Abraham, O. Mentre, [Bi2O2]2+ layers in Bi2O2(OH)(NO3): synthesis and structure determination. Z. Naturforsch. B 2005, 60, 322-327.Google Scholar

  • [48]

    M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3).DMSO.2H2O. Main Group Met. Chem. 2012, 35, 135–139.Google Scholar

  • [49]

    G. Gattow, G. Kiel, Über Wismutnitrate. IV. Darstellung und Eigenschaften von Bi(NO3)3.5H2O. Z. Anorg. Allg. Chem. 1965, 335, 61–73.CrossrefGoogle Scholar

  • [50]

    A. Pathak, V. L. Blair, R. L. Ferrero, M. Mehring, P. C. Andrews, Bismuth(III) benzohydroxamates: powerful anti-bacterial activity against helicobacter pylori and hydrolysis to a unique Bi34 oxido-cluster [Bi34O22(BHA)22(H-BHA)14(DMSO)6]. Chem. Commun. 2014, 50, 15232–15234.CrossrefGoogle Scholar

  • [51]

    M. Schlesinger, A. Pathak, S. Richter, D. Sattler, A. Seifert, T. Rüffer, P. C. Andrews, C. A. Schalley, H. Lang, M. Mehring, Salicylate-functionalized bismuth oxido clusters: hydrolysis processes and microbiological activity. Eur. J. Inorg. Chem. 2014, 4218–4227.Google Scholar

  • [52]

    P. C. Andrews, G. B. Deacon, P. C. Junk, I. Kumar, J. G. MacLellan, Synthesis, ethanolysis, and hydrolysis of bismuth(III) ortho-nitrobenzoate complexes en route to a pearl necklace-like polymer of Bi10 oxo-clusters. Organometallics 2009, 28, 3999–4008.CrossrefGoogle Scholar

  • [53]

    E. Asato, K. Katsura, M. Mikuriya, U. Turpeinen, I. Mutikainen, J. Reedijk, Synthesis, structure, and spectroscopic properties of bismuth citrate compounds and the bismuth-containing ulcer-healing agent Colloidal Bismuth Subcitrate (CBS). 4. crystal-structure and solution behavior of a unique dodecanuclear cluster (NH4)12[Bi12O8(Cit)8](H2O)10. Inorg. Chem. 1995, 34, 2447–2454.Google Scholar

  • [54]

    M. Mehring, M. Schürmann, The first bismuth phosphonate cluster. X-ray single crystal structure of [(t-BuPO3)10(t-BuPO3H)2Bi14O10.3C6H6.4H2O]. Chem. Commun. 2001, 2354–2355.Google Scholar

  • [55]

    P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun. 2012, 48, 7583–7585.CrossrefGoogle Scholar

  • [56]

    M. Walther, D. Zahn. Molecular mechanisms of [Bi6O4(OH)4](NO3)6 precursor activation, agglomeration, and ripening towards bismuth oxide nuclei. Eur. J. Inorg. Chem. 2015, 1178–1181.Google Scholar

  • [57]

    A. F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3. Powder Diffr. 1997, 12, 90–92.CrossrefGoogle Scholar

  • [58]

    G. Gattow, H. Schröder, Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-Oxid (Delta-Bi2O3). Z. Anorg. Allg. Chem. 1962, 318, 176–189.CrossrefGoogle Scholar

  • [59]

    H. A. Harwig, Structure of bismuthsesquioxide – alpha, beta, gamma and delta-phase. Z. Anorg. Allg. Chem. 1978, 444, 151–166.CrossrefGoogle Scholar

  • [60]

    S. Neov, V. Marinova, M. Reehuis, R. Sonntag, Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M=Si, Si0.995Mn0.005, Bi0.53Mn0.47). Appl. Phys. A. 2002, 74, 1016–1018.CrossrefGoogle Scholar

  • [61]

    M. Drache, P. Roussel, J. P. Wignacourt, Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3. Chem. Rev. 2007, 107, 80–96.CrossrefGoogle Scholar

  • [62]

    E. M. Levin, R. S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on polymorphism of Bi2O3. J. Res. Natl. Bur. Stand. A. 1964, A 68, 197–206.Google Scholar

  • [63]

    M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans. 2013, 42, 1047–1056.CrossrefGoogle Scholar

  • [64]

    M. Schlesinger, M. Weber, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen 2013, 2, 146–155.CrossrefGoogle Scholar

  • [65]

    L. Kumari, J. H. Lin, Y. R. Ma, One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties. J. Phys.: Condes. Matter. 2007, 19, 406204.Google Scholar

  • [66]

    M. Weber, M. Schlesinger, M. Mehring, Evaluation of synthetic methods on the synthesis of bismuth(III) oxide polymorphs: formation of binary versus ternary oxides. Cryst. Growth Des. 2016, DOI: .CrossrefGoogle Scholar

  • [67]

    R. A. Laudise, A. A. Ballman, Solubility of quartz under hydrothermal conditions. J. Phys. Chem. 1961, 65, 1396–1400.CrossrefGoogle Scholar

  • [68]

    T. K. Tseng, J. H. Choi, D. W. Jung, M. Davidson, P. H. Holloway, Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide. ACS Appl. Mater. Interfaces 2010, 2, 943–946.CrossrefGoogle Scholar

  • [69]

    W. Zhou, Defect fluorite-related superstructures in the Bi2O3-V2O5 system. J. Solid State Chem. 1988, 76, 290–300.CrossrefGoogle Scholar

  • [70]

    F. D. Hardcastle, I. E. Wachs, H. Eckert, D. A. Jefferson, Vanadium(V) Environments in bismuth vanadates – a structural investigation using Raman-spectroscopy and solid-state V-51 NMR. J. Solid State Chem. 1991, 90, 194–210.CrossrefGoogle Scholar

  • [71]

    A. Watanabe, Is it possible to stabilize delta-Bi2O3 by an oxide additive? Solid State Ionics 1990, 40-1, 889–892.Google Scholar

  • [72]

    M. G. Francesconi, A. L. Kirbyshire, C. Greaves, O. Richard, G. Van Tendeloo, Synthesis and structure of Bi14O20(SO4), a new bismuth oxide sulfate. Chem. Mater. 1998, 10, 626–632.CrossrefGoogle Scholar

  • [73]

    P. Kitschke, S. Schulze, M. Hietschold, M. Mehring, Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison. Main Group Met. Chem. 2013, 36, 209–214.Google Scholar

  • [74]

    G. Corsmit, M. A. Vandriel, R. J. Elsenaar, W. Vandeguchte, A. M. Hoogenboom, J. C. Sens, Thermal-analysis of bismuth-germanate compounds. J. Cryst. Growth 1986, 75, 551–560.CrossrefGoogle Scholar

  • [75]

    V. V. Zyryanov, V. I. Smirnov, M. I. Ivanovskaya, Mechanochemical synthesis of crystalline compounds in the Bi2O3-GeO2 system. Inorg. Mater. 2005, 41, 618–626.CrossrefGoogle Scholar

About the article

Received: 2016-06-07

Accepted: 2016-09-06

Published Online: 2016-10-12

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 185–207, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1970.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in