Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

Imago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198

See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)


Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications

Marcus Weber
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
/ Maik Schlesinger
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
/ Markus Walther
  • Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
/ Dirk Zahn
  • Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
/ Christoph A. Schalley
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
/ Michael Mehring
  • Corresponding author
  • Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, 09107 Chemnitz, Germany
  • Email:
Published Online: 2016-10-12 | DOI: https://doi.org/10.1515/zkri-2016-1970


Investigations on bismuth oxido clusters are focused on the nucleation and growth processes towards large cluster motifs and their stability in the gas phase, which has been studied by electrospray ionization mass spectrometry (ESI-MS), molecular dynamics (MD) simulations and X-ray scattering experiments evaluated by pair distribution function (PDF) analysis. The formation of metastable bismuth(III) oxides was obtained by hydrolysis of polynuclear bismuth oxido clusters and subsequent thermal treatment under non-equilibrium conditions. Temperature dependent PXRD and Raman spectroscopic experiments gave insight into the formation process of metastable β-Bi2O3 starting from the amorphous hydrolysis products as-obtained from polynuclear bismuth oxido clusters. Furthermore, PXRD as well as energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of several new ternary bismuth(III) rich oxides such as Bi14O20(MO4) (M=S, Se) as-obtained by hydrolysis of bismuth oxido clusters in the presence of diverse additives.

Keywords: bismuth oxido cluster; bismuth(III) oxide polymorphs; ESI-MS; hydrolysis; metastable


  • [1]

    P. J. Sadler, H. Y. Li, H. Z. Sun, Coordination chemistry of metals in medicine: target sites for bismuth. Coord. Chem. Rev. 1999, 1856, 689–709.

  • [2]

    H. Ippen, Bismuth subnitrate – useful or obsolete. Hautarzt 1997, 48, 424–424.

  • [3]

    J. R. Lambert, P. Midolo, The actions of bismuth in the treatment of helicobacter pylori infection. Aliment. Pharm. Ther. 1997, 11, 27–33.

  • [4]

    G. G. Briand, N. Burford, Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 1999, 99, 2601–2657.

  • [5]

    R. G. Ge, H. Z. Sun, Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res. 2007, 40, 267–274.

  • [6]

    J. Boertz, L. M. Hartmann, M. Sulkowski, J. Hippler, F. Mosel, R. A. Diaz-Bone, K. Michalke, A. W. Rettenmeier, A. V. Hirner, Determination of trimethylbismuth in the human body after ingestion of colloidal bismuth subcitrate. Drug Metab. Dispos. 2009, 37, 352–358.

  • [7]

    K. Michalke, A. Schmidt, B. Huber, J. Meyer, M. Sulkowski, A. V. Hirner, J. Boertz, F. Mosel, P. Dammann, G. Hilken, H. J. Hedrich, M. Dorsch, A. W. Rettenmeier, R. Hensel, Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl. Environ. Microbiol. 2008, 74, 3069–3075.

  • [8]

    D. Figueroaquintanilla, E. Salazarlindo, B. Sack, R. Leonbarua, S. Sarabiaarce, M. Campossanchez, E. Eyzaguirremaccan, A controlled trial of bismuth subsalicylate in infants with acute watery diarrheal disease. N. Engl. J. Med. 1993, 328, 1653–1658.

  • [9]

    L. A. Tillman, F. M. Drake, J. S. Dixon, J. R. Wood, Safety of bismuth in the treatment of gastrointestinal diseases. Aliment. Pharm. Ther. 1996, 10, 459–467.

  • [10]

    H. Z. Sun, Biological chemistry of arsenic, antimony and bismuth, Wiley, Hong Kong, 2011.

  • [11]

    V. Fruth, M. Popa, D. Berger, R. Ramer, A. Gartner, A. Ciulei, A. Zaharescu, Deposition and characterisation of bismuth oxide thin films. J. Eur. Ceram. Soc. 2005, 25, 2171–2174.

  • [12]

    P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179–196.

  • [13]

    L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480–485.

  • [14]

    S. Anandan, G. J. Lee, P. K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Ind. Eng. Chem. Res. 2010, 49, 9729–9737.

  • [15]

    K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater. 2010, 22, 3079–3085.

  • [16]

    A. Cabot, A. Marsal, J. Arbiol, J. R. Morante. Bi2O3 as a selective sensing material for NO detection. Sens. Actuators, B. 2004, 99, 74–89.

  • [17]

    T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J. P. Jolivet, Bi2O3, BiVO4, and Bi2WO6 impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 2011, 115, 5657–5666.

  • [18]

    C. L. Wu, L. Shen, Q. L. Huang, Y. C. Zhang, Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett. 2011, 65, 1134–1136.

  • [19]

    M. Mehring, From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. 2007, 251, 974–1006.

  • [20]

    J. Ma, L. Z. Zhang, Y. H. Wang, S. L. Lei, X. B. Luo, S. H. Chen, G. S. Zeng, J. P. Zou, S. L. Luo, C. T. Au, Mechanism of 2,4-dinitrophenol photocatalytic degradation by Zeta-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem. Eng. J. 2014, 251, 371–380.

  • [21]

    T. Atou, H. Faqir, M. Kikuchi, H. Chiba, Y. Syono, A new high-pressure phase of bismuth oxide. Mater. Res. Bull. 1998, 33, 289–292.

  • [22]

    G. Gattow, H. Fricke, Über Wismutoxide. IV. Beitrag zu den binären Systemen des Bi2O3 mit SiO2, GeO2 und SnO2. Z. Anorg. Allg. Chem. 1963, 324, 287–296.

  • [23]

    L. G. Sillén, X-ray studies on bismuth trioxide. Ark. Kem. Mineral. Geol. 1937, 12A, 1–15.

  • [24]

    B. Aurivillius, L. G. Sillen, Polymorphy of bismuth trioxide. Nature 1945, 155, 305–306.

  • [25]

    W. Schumb, E. J. Rittner, Polymorphism of bismuth trioxide. J. Am. Chem. Soc. 1943, 65, 1055–1060.

  • [26]

    L. Zhou, W. Z. Wang, H. L. Xu, S. M. Sun, M. Shang, Bi2O3 hierarchical nanostructures controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J. 2009, 15, 1776–1782.

  • [27]

    H. H. Jing, X. Q. Chen, X. Y. Jiang, Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems. Micro Nano Lett. 2012, 7, 357–359.

  • [28]

    Y. Wang, Y. L. Li, Metastable gamma-Bi2O3 tetrahedra: phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J. Colloid Interf. Sci. 2015, 454, 238–244.

  • [29]

    F. Lazarini, Crystal-Structure of a bismuth basic nitrate, Bi6O5(OH)3(NO3)5.3H2O. Acta Cryst. B. 1978, 34, 3169–3173.

  • [30]

    F. Lazarini, Bismuth basic nitrate Bi6(H2O)(NO3)O4(OH)4(NO3)5. Acta Cryst. B. 1979, 35, 448–450.

  • [31]

    B. Sundvall, Crystal and molecular-structure of tetraoxo-hydroxobismuth(III) nitrate monohydrate, Bi6O4(HO)4(NO3)6.H2O. Acta Chem. Scand. A 1979, 33, 219–224.

  • [32]

    P. C. Andrews, G. B. Deacon, C. M. Forsyth, P. C. Junk, I. Kumar, M. Maguire, Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. Angew. Chem., Int. Ed. 2006, 45, 5638–5642.

  • [33]

    L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffer, H. R. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J. 2011, 17, 6985–6990.

  • [34]

    L. Miersch, T. Rüffer, M. Schlesinger, H. Lang, M. Mehring, Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates. Inorg. Chem. 2012, 51, 9376–9384.

  • [35]

    A. Zahariev, N. Kaloyanov, C. Girginov, V. Parvanova, Synthesis and thermal decomposition of [Bi6O6(OH)2](NH2C6H4SO3)4. Thermochim. Acta 2012, 528, 85–89.

  • [36]

    L. W. Zimmermann, T. Schleid, A basic bismuth(III) dodecahydro-closo-dodecaborate hydrate: [Bi6O4(OH)4][B12H12]3.10H2O. Z. Anorg. Allg. Chem. 2011, 637, 1903–1908.

  • [37]

    B. Sundvall, Crystal-structure of tetraoxotetrahydroxohexa-bismuth(III) perchlorate heptahydrate, Bi6O4(HO)4(ClO4)6.7H2O – an X-ray and neutron-diffraction study. Inorg. Chem. 1983, 22, 1906–1912.

  • [38]

    L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem. 2010, 4763–4769.

  • [39]

    L. Miersch, T. Rüffer, M. Mehring, Organic-inorganic hybrid materials starting from the novel nanoscaled bismuth oxido methacrylate cluster [Bi38O45(OMc)24(DMSO)9].2DMSO.7H2O. Chem. Commun. 2011, 47, 6353–6355.

  • [40]

    L. Wrobel, L. Miersch, M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, The bismuth hydrogen sulfate [Bi2(SO4)2(dmso)8](HSO4)2. Z. Anorg. Allg. Chem. 2014, 640, 1431–1436.

  • [41]

    M. Schlesinger, L. Miersch, T. Rüffer, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters, [Bi38O45(OMc)22(C8H7SO3)2(DMSO)6(H2O)1.5].2.5H2O and [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)].DMSO.2H2O. Main Group Met. Chem. 2013, 36, 11–19.

  • [42]

    D. Sattler, M. Schlesinger, M. Mehring, C. A. Schalley, Mass spectrometry and gas-phase chemistry of bismuth-oxido clusters. ChemPlusChem 2013, 78, 1005–1014.

  • [43]

    L. Miersch, Synthese und Charakterisierung neuartiger Bismutoxido-Cluster als molekulare Vorstufen für organisch-anorganische Hybridmaterialien. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany 2012.

  • [44]

    D. Mansfeld, M. Mehring, M. Schürmann, From a monomeric bismuth silanolate to a molecular bismuth oxo cluster: [Bi22O26(OSiMe2tBu)14]. Angew. Chem., Int. Ed. 2005, 44, 245–249.

  • [45]

    D. Mansfeld, L. Miersch, T. Rüffer, D. Schaarschmidt, H. Lang, T. Böhle, R. W. Troff, C. A. Schalley, J. Müller, M. Mehring, From {Bi22O26} to chiral ligand-protected {Bi38O45}-based bismuth oxido clusters. Chem. Eur. J. 2011, 17, 14805–14810.

  • [46]

    M. Schlesinger, Über nanoskalige Bismutoxidocluster zu (metastabilen) Polymorphen des Bismut(III)-oxids und deren photokatalytische Aktivität. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany 2013.

  • [47]

    N. Henry, M. Evain, P. Deniard, S. Jobic, F. Abraham, O. Mentre, [Bi2O2]2+ layers in Bi2O2(OH)(NO3): synthesis and structure determination. Z. Naturforsch. B 2005, 60, 322-327.

  • [48]

    M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3).DMSO.2H2O. Main Group Met. Chem. 2012, 35, 135–139.

  • [49]

    G. Gattow, G. Kiel, Über Wismutnitrate. IV. Darstellung und Eigenschaften von Bi(NO3)3.5H2O. Z. Anorg. Allg. Chem. 1965, 335, 61–73.

  • [50]

    A. Pathak, V. L. Blair, R. L. Ferrero, M. Mehring, P. C. Andrews, Bismuth(III) benzohydroxamates: powerful anti-bacterial activity against helicobacter pylori and hydrolysis to a unique Bi34 oxido-cluster [Bi34O22(BHA)22(H-BHA)14(DMSO)6]. Chem. Commun. 2014, 50, 15232–15234.

  • [51]

    M. Schlesinger, A. Pathak, S. Richter, D. Sattler, A. Seifert, T. Rüffer, P. C. Andrews, C. A. Schalley, H. Lang, M. Mehring, Salicylate-functionalized bismuth oxido clusters: hydrolysis processes and microbiological activity. Eur. J. Inorg. Chem. 2014, 4218–4227.

  • [52]

    P. C. Andrews, G. B. Deacon, P. C. Junk, I. Kumar, J. G. MacLellan, Synthesis, ethanolysis, and hydrolysis of bismuth(III) ortho-nitrobenzoate complexes en route to a pearl necklace-like polymer of Bi10 oxo-clusters. Organometallics 2009, 28, 3999–4008.

  • [53]

    E. Asato, K. Katsura, M. Mikuriya, U. Turpeinen, I. Mutikainen, J. Reedijk, Synthesis, structure, and spectroscopic properties of bismuth citrate compounds and the bismuth-containing ulcer-healing agent Colloidal Bismuth Subcitrate (CBS). 4. crystal-structure and solution behavior of a unique dodecanuclear cluster (NH4)12[Bi12O8(Cit)8](H2O)10. Inorg. Chem. 1995, 34, 2447–2454.

  • [54]

    M. Mehring, M. Schürmann, The first bismuth phosphonate cluster. X-ray single crystal structure of [(t-BuPO3)10(t-BuPO3H)2Bi14O10.3C6H6.4H2O]. Chem. Commun. 2001, 2354–2355.

  • [55]

    P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun. 2012, 48, 7583–7585.

  • [56]

    M. Walther, D. Zahn. Molecular mechanisms of [Bi6O4(OH)4](NO3)6 precursor activation, agglomeration, and ripening towards bismuth oxide nuclei. Eur. J. Inorg. Chem. 2015, 1178–1181.

  • [57]

    A. F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3. Powder Diffr. 1997, 12, 90–92.

  • [58]

    G. Gattow, H. Schröder, Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-Oxid (Delta-Bi2O3). Z. Anorg. Allg. Chem. 1962, 318, 176–189.

  • [59]

    H. A. Harwig, Structure of bismuthsesquioxide – alpha, beta, gamma and delta-phase. Z. Anorg. Allg. Chem. 1978, 444, 151–166.

  • [60]

    S. Neov, V. Marinova, M. Reehuis, R. Sonntag, Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M=Si, Si0.995Mn0.005, Bi0.53Mn0.47). Appl. Phys. A. 2002, 74, 1016–1018.

  • [61]

    M. Drache, P. Roussel, J. P. Wignacourt, Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3. Chem. Rev. 2007, 107, 80–96.

  • [62]

    E. M. Levin, R. S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on polymorphism of Bi2O3. J. Res. Natl. Bur. Stand. A. 1964, A 68, 197–206.

  • [63]

    M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans. 2013, 42, 1047–1056.

  • [64]

    M. Schlesinger, M. Weber, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen 2013, 2, 146–155.

  • [65]

    L. Kumari, J. H. Lin, Y. R. Ma, One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties. J. Phys.: Condes. Matter. 2007, 19, 406204.

  • [66]

    M. Weber, M. Schlesinger, M. Mehring, Evaluation of synthetic methods on the synthesis of bismuth(III) oxide polymorphs: formation of binary versus ternary oxides. Cryst. Growth Des. 2016, DOI: [Crossref].

  • [67]

    R. A. Laudise, A. A. Ballman, Solubility of quartz under hydrothermal conditions. J. Phys. Chem. 1961, 65, 1396–1400.

  • [68]

    T. K. Tseng, J. H. Choi, D. W. Jung, M. Davidson, P. H. Holloway, Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide. ACS Appl. Mater. Interfaces 2010, 2, 943–946.

  • [69]

    W. Zhou, Defect fluorite-related superstructures in the Bi2O3-V2O5 system. J. Solid State Chem. 1988, 76, 290–300.

  • [70]

    F. D. Hardcastle, I. E. Wachs, H. Eckert, D. A. Jefferson, Vanadium(V) Environments in bismuth vanadates – a structural investigation using Raman-spectroscopy and solid-state V-51 NMR. J. Solid State Chem. 1991, 90, 194–210.

  • [71]

    A. Watanabe, Is it possible to stabilize delta-Bi2O3 by an oxide additive? Solid State Ionics 1990, 40-1, 889–892.

  • [72]

    M. G. Francesconi, A. L. Kirbyshire, C. Greaves, O. Richard, G. Van Tendeloo, Synthesis and structure of Bi14O20(SO4), a new bismuth oxide sulfate. Chem. Mater. 1998, 10, 626–632.

  • [73]

    P. Kitschke, S. Schulze, M. Hietschold, M. Mehring, Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison. Main Group Met. Chem. 2013, 36, 209–214.

  • [74]

    G. Corsmit, M. A. Vandriel, R. J. Elsenaar, W. Vandeguchte, A. M. Hoogenboom, J. C. Sens, Thermal-analysis of bismuth-germanate compounds. J. Cryst. Growth 1986, 75, 551–560.

  • [75]

    V. V. Zyryanov, V. I. Smirnov, M. I. Ivanovskaya, Mechanochemical synthesis of crystalline compounds in the Bi2O3-GeO2 system. Inorg. Mater. 2005, 41, 618–626.

About the article

Received: 2016-06-07

Accepted: 2016-09-06

Published Online: 2016-10-12

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1970. Export Citation

Comments (0)

Please log in or register to comment.
Log in