Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

Imago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198

Online
ISSN
2196-7105
See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)

Issues

Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution

Manuel Wilke
  • BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11, 12489 Berlin, Germany
  • Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
/ Sven Bach
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
/ Tatiana E. Gorelik
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
/ Ute Kolb
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
/ Wolfgang Tremel
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
/ Franziska Emmerling
  • Corresponding author
  • BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11, 12489 Berlin, Germany
  • Email:
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/zkri-2016-1971

Abstract

Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pathway for the synthesis of divalent phosphonates as a possibility to generate new, in certain cases metastable compounds. The benefits of in situ investigation of synthesis mechanisms as well as the implementation of sophisticated methods for the structure analysis of the resulting compounds are discussed.

Keywords: ADT; mechanochemistry; phosphonates

References

  • [1]

    S. R. Batten, N. R. Champness, X. M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Ohrstrom, M. O’Keeffe, M. P. Suh, J. Reedijk, Pure Appl. Chem. 2013, 85, 1715.

  • [2]

    G. Alberti, U. Costantino, S. Allulli, N. Tomassini, J. Inorg. Nucl. Chem. 1978, 40, 1113.

  • [3]

    D. Cunningham, P. J. D. Hennelly, Inorg. Chim. Acta 1979, 37, 95.

  • [4]

    M. B. Dines, P. M. Digiacomo, Inorg. Chem. 1981, 20, 92.

  • [5]

    G. Alberti, U. Costantino, M. L. Lucianigiovagnotti, J. Chromatogr. 1979, 180, 45.

  • [6]

    M. D. Poojary, H. L. Hu, F. L. Campbell, A. Clearfield, Acta Crystallogr. Sect. B: Struct. Sci. 1993, 49, 996.

  • [7]

    K. D. Demadis, N. Stavgianoudaki, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 438, 2012.

  • [8]

    G. K. H. Shimizu, J. M. Taylor, K. W. Dawson, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 493, 2012.

  • [9]

    A. Clearfield, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 1, 2012.

  • [10]

    G. Cao, H. Lee, V. M. Lynch, T. E. Mallouk, Inorg. Chem. 1988, 27, 2781.

  • [11]

    K. J. Martin, P. J. Squattrito, A. Clearfield, Inorg. Chim. Acta 1989, 155, 7.

  • [12]

    G. Cao, V. M. Lynch, L. N. Yacullo, Chem. Mater. 1993, 5, 1000.

  • [13]

    C. Bellitto, F. Federici, A. Altomare, R. Rizzi, S. A. Ibrahim, Inorg. Chem. 2000, 39, 1803.

  • [14]

    T. O. Salami, X. Fan, P. Y. Zavalij, S. R. J. Oliver, Dalton Trans. 2006, 1574.

  • [15]

    E. M. Bauer, C. Bellitto, G. Righini, M. Colapietro, G. Portalone, M. Drillon, P. Rabu, Inorg. Chem. 2008, 47, 10945.

  • [16]

    J. Goura, V. Chandrasekhar, Chem. Rev. 2015, 115, 6854.

  • [17]

    R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 2000, 14, 2349.

  • [18]

    V. Chandrasekhar, P. Sasikumar, R. Boomishankar, G. Anantharamian, Inorg. Chem. 2006, 45, 3344.

  • [19]

    V. Chandrasekhar, L. Nagarajan, R. Clerac, S. Ghosh, S. Verma, Inorg. Chem. 2008, 47, 1067.

  • [20]

    V. Baskar, M. Shanmugam, E. C. Sanudo, M. Shanmugam, D. Collison, E. J. L. McInnes, Q. Wei, R. E. P. Winpenny, Chem. Commun. 2007, 1, 37.

  • [21]

    E. K. Brechin, R. A. Coxall, A. Parkin, S. Parsons, P. A. Tasker, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2001, 40, 2700.

  • [22]

    K. Slepokura, A. Piatkowska, T. Lis, Zeitschrift Fur Kristallographie 2002, 217, 614.

  • [23]

    M. Wilke, A. G. Buzanich, U. Reinholz, K. Rademann, F. Emmerling, Dalton Trans. 2016, 45, 9460.

  • [24]

    B. K. Tripuramallu, R. Kishore, S. K. Das, Polyhedron 2010, 29, 2985.

  • [25]

    A. Bulut, Y. Zorlu, E. Kirpi, A. Cetinkaya, M. Worle, J. Beckmann, G. Yucesan, Cryst. Growth Des. 2015, 15, 5665.

  • [26]

    Z. Y. Du, J. J. Huang, Y. R. Xie, H. R. Wen, J. Mol. Struct. 2009, 919, 112.

  • [27]

    K. R. Ma, Y. H. Kan, X. L. Wang, L. Cao, J. Cluster Sci. 2016, 27, 213.

  • [28]

    V. Lopez-Diaz, T. M. S. Pellizerri, M. D. Lijewski, K. Ruhlandt, J. Zubieta, Inorg. Chim. Acta 2016, 441, 109.

  • [29]

    J. Huang, P. Y. Liu, H. Zhu, S. S. Bao, L. M. Zheng, J. Ma, Chempluschem 2012, 77, 1087.

  • [30]

    R. M. P. Colodrero, P. Olivera-Pastor, A. Cabeza, M. Papadaki, K. D. Demadis, M. A. G. Aranda, Inorg. Chem. 2010, 49, 761.

  • [31]

    J. G. Mao, Z. K. Wang, A. Clearfield, J. Chem. Soc. Dalton Trans. 2002, 24, 4541.

  • [32]

    S. F. Tang, X. B. Pan, X. X. Lv, X. B. Zhao, J. Solid State Chem. 2013, 197, 139.

  • [33]

    J. Svoboda, V. Zima, L. Benes, K. Melanova, M. Vicek, Inorg. Chem. 2005, 44, 9968.

  • [34]

    L. Lin, T. J. Zhang, Y. T. Fan, D. G. Ding, H. W. Hou, J. Mol. Struct. 2007, 837, 107.

  • [35]

    V. Zima, J. Svoboda, L. Benes, K. Melanova, M. Trchova, J. Dybal, J. Solid State Chem. 2007, 180, 929.

  • [36]

    E. V. Bakhmutova, X. Ouyang, D. G. Medvedev, A. Clearfield, Inorg. Chem. 2003, 42, 7046.

  • [37]

    M. Wilke, L. Batzdorf, F. Fischer, K. Rademann, F. Emmerling, RSC Adv. 2016, 6, 36011.

  • [38]

    G. Cao, H. G. Hong, T. E. Mallouk, Acc. Chem. Res. 1992, 25, 420.

  • [39]

    G. Cao, H. Lee, V. M. Lynch, T. E. Mallouk, Solid State Ionics 1988, 26, 63.

  • [40]

    G. Cao, T. E. Mallouk, Inorg. Chem. 1991, 30, 1434.

  • [41]

    Y. P. Zhang, A. Clearfield, Inorg. Chem. 1992, 31, 2821.

  • [42]

    S. Chausson, J. M. Rueff, M. B. Lepetit, O. Perez, R. Retoux, C. Simon, L. Le Pluart, P. A. Jaffres, Eur. J. Inorg. Chem. 2012, 13, 2193.

  • [43]

    N. Hugot, M. Roger, J. M. Rueff, J. Cardin, O. Perez, V. Caignaert, B. Raveau, G. Rogez, P. A. Jaffres, Eur. J. Inorg. Chem. 2016, 2, 266.

  • [44]

    G. Cao, V. M. Lynch, J. S. Swinnea, T. E. Mallouk, Inorg. Chem. 1990, 29, 2112.

  • [45]

    A. H. Mahmoudkhani, V. Langer, Solid State Sci. 2001, 3, 519.

  • [46]

    D. M. Poojary, B. L. Zhang, A. Cabeza, M. A. G. Aranda, S. Bruque, A. Clearfield, J. Mater. Chem. 1996, 6, 639.

  • [47]

    H. Zhu, J. Huang, S. S. Bao, M. Ren, L. M. Zheng, Dalton Trans. 2013, 42, 14075.

  • [48]

    Y. P. Zhu, T. Y. Ma, Y. L. Liu, T. Z. Ren, Z. Y. Yuan, Inorg. Chem. Front. 2014, 1, 360.

  • [49]

    A. Clearfield, Chem. Mater. 1998, 10, 2801.

  • [50]

    D. M. Poojary, B. L. Zhang, P. Bellinghausen, A. Clearfield, Inorg. Chem. 1996, 35, 5254.

  • [51]

    D. M. Poojary, B. L. Zhang, P. Bellinghausen, A. Clearfield, Inorg. Chem. 1996, 35, 4942.

  • [52]

    D. M. Poojary, B. L. Zhang, A. Clearfield, J. Am. Chem. Soc. 1997, 119, 12550.

  • [53]

    D. K. Cao, S. Gao, L. M. Zheng, J. Solid State Chem. 2004, 177, 2311.

  • [54]

    B. L. Zhang, D. M. Poojary, A. Clearfield, Inorg. Chem. 1998, 37, 1844.

  • [55]

    S. Drumel, P. Janvier, P. Barboux, M. Bujolidoeuff, B. Bujoli, Inorg. Chem. 1995, 34, 148.

  • [56]

    W. Chu, Y. Y. Zhu, Z. G. Sun, C. Q. Jiao, J. Li, S. H. Sun, H. Tian, M. J. Zheng, RSC Adv. 2013, 3, 623.

  • [57]

    J. Lebideau, C. Payen, P. Palvadeau, B. Bujoli, Inorg. Chem. 1994, 33, 4885.

  • [58]

    A. K. Cheetham, G. Ferey, T. Loiseau, Angew. Chem. Int. Ed. 1999, 38, 3268.

  • [59]

    A. Clearfield, Curr. Opin. Solid State Mater. Sci. 2002, 6, 495.

  • [60]

    G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430.

  • [61]

    K. Maeda, Microporous Mesoporous Mater. 2004, 73, 47.

  • [62]

    D. L. Lohse, S. C. Sevov, Angew. Chem. Int. Ed. Engl. 1997, 36, 1619.

  • [63]

    R. LaDuca, D. Rose, J. R. D. DeBord, R. C. Haushalter, C. J. Oconnor, J. Zubieta, J. Solid State Chem. 1996, 123, 408.

  • [64]

    J. M. Taylor, A. H. Mahmoudkhani, G. K. H. Shimizu, Angew. Chem. Int. Ed. 2007, 46, 795.

  • [65]

    T. Sun, C. Q. Jiao, W. Z. Li, Z. G. Sun, C. Ma, Y. Y. Zhu, M. X. Ma, H. Luo, X. W. Zhang, M. L. Wang, RSC Adv. 2015, 5, 26410.

  • [66]

    R. Sen, D. Saha, D. Mal, P. Brandao, G. Rogez, Z. Lin, Eur. J. Inorg. Chem. 2013, 2013, 5020.

  • [67]

    C. Ma, C. Q. Jiao, Z. G. Sun, Y. Y. Zhu, X. W. Zhang, M. L. Wang, D. Yang, Z. Zhao, H. Y. Li, B. Xing, Rsc. Adv. 2015, 5, 79041.

  • [68]

    K. D. Demadis, M. Papadaki, R. G. Raptis, H. Zhao, J. Solid State Chem. 2008, 181, 679.

  • [69]

    B. P. Yang, J. G. Mao, J. Mol. Struct. 2007, 830, 78.

  • [70]

    R. M. P. Colodrero, A. Cabeza, P. Olivera-Pastor, M. Papadaki, J. Rius, D. Choquesillo-Lazarte, J. M. García-Ruiz, K. D. Demadis, M. A. G. Aranda, Cryst. Growth Des. 2011, 11, 1713.

  • [71]

    R. Murugavel, P. Davis, M. G. Walawalkar, Z. Anorg. Allg. Chem. 2005, 631, 2806.

  • [72]

    M. Feyand, A. Hubner, A. Rothkirch, D. S. Wragg, N. Stock, Inorg. Chem. 2012, 51, 12540.

  • [73]

    L.-H. Schilling, N. Stock, Dalton Trans. 2014, 43, 414.

  • [74]

    N. Stavgianoudaki, K. E. Papathanasiou, R. M. P. Colodrero, D. Choquesillo-Lazarte, J. M. Garcia-Ruiz, A. Cabeza, M. A. G. Aranda, K. D. Demadis, Crystengcomm 2012, 14, 5385.

  • [75]

    N. Stock, T. Bein, Angew. Chem. Int. Ed. 2004, 43, 749.

  • [76]

    N. Stock, Microporous Mesoporous Mater. 2010, 129, 287.

  • [77]

    P. Maniam, N. Stock, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 87, 2012.

  • [78]

    S. Bauer, T. Bein, N. Stock, Inorg. Chem. 2005, 44, 5882.

  • [79]

    N. Stock, T. Bein, J. Mater. Chem. 2005, 15, 1384.

  • [80]

    S. Bauer, N. Stock, Angew. Chem. Int. Ed. 2007, 46, 6857.

  • [81]

    S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413.

  • [82]

    P. Balaz, M. Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 2013, 42, 7571.

  • [83]

    E. Boldyreva, Chem. Soc. Rev. 2013, 42, 7719.

  • [84]

    J. F. Fernandez-Bertran, Pure Appl. Chem. 1999, 71, 581.

  • [85]

    L. Batzdorf, F. Fischer, M. Wilke, K. J. Wenzel, F. Emmerling, Angew. Chem. Int. Ed. 2015, 54, 1799.

  • [86]

    U. Kolb, T. Gorelik, C. Kubel, M. T. Otten, D. Hubert, Ultramicroscopy 2007, 107, 507.

  • [87]

    D. L. Zhang, P. Oleynikov, S. Hovmoller, X. D. Zou, Zeitschrift Fur Kristallographie 2010, 225, 94.

  • [88]

    E. van Genderen, M. T. B. Clabbers, P. P. Das, A. Stewart, I. Nederlof, K. C. Barentsen, Q. Portillo, N. S. Pannu, S. Nicolopoulos, T. Gruene, J. P. Abrahams, Acta Crystallogr. A-Found. Adv. 2016, 72, 236.

  • [89]

    I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich, Mineralogical Magazine 2010, 74, 159.

  • [90]

    C. S. Birkel, E. Mugnaioli, T. Gorelik, U. Kolb, M. Panthoefer, W. Tremel, J. Am. Chem. Soc. 2010, 132, 9881.

  • [91]

    J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb, A. Corma, Science 2011, 333, 1131.

  • [92]

    M. Gemmi, I. Campostrini, F. Demartin, T. E. Gorelik, C. M. Gramaccioli, Acta Crystallogr. Sect. B: Struct. Sci. 2012, 68, 15.

  • [93]

    T. Willhammar, J. Sun, W. Wan, P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martinez, F. Rey, A. Corma, Nat. Chem. 2012, 4, 188.

  • [94]

    U. Kolb, T. E. Gorelik, E. Mugnaioli, A. Stewart, Polym. Rev. 2010, 50, 385.

  • [95]

    T. E. Gorelik, J. van de Streek, A. F. M. Kilbinger, G. Brunklaus, U. Kolb, Acta Crystallogr. Sect. B: Struct. Sci. 2012, 68, 171.

  • [96]

    C. Forster, T. E. Gorelik, U. Kolb, V. Ksenofontov, K. Heinze, Eur. J. Inorg. Chem. 2015, 6, 920.

  • [97]

    T. E. Gorelik, C. Czech, S. M. Hammer, M. U. Schmidt, Crystengcomm 2016, 18, 529.

  • [98]

    R. Henderson, Quart. Rev. Biophys. 1995, 28, 171.

  • [99]

    M. Etter, R. E. Dinnebier, Z. Anorg. Allg. Chem. 2014, 640, 3015.

  • [100]

    W. I. F. David, K. Shankland, J. van de Streek, E. Pidcock, W. D. S. Motherwell, J. C. Cole, J. Appl. Crystallogr. 2006, 39, 910.

  • [101]

    A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 2013, 46, 1231.

  • [102]

    V. Favre-Nicolin, R. Cerny, J. Appl. Crystallogr. 2002, 35, 734.

  • [103]

    C. Giacovazzo, Acta Crystallogr. Sect. A 1996, 52, 331.

  • [104]

    A. A. Coelho, J. Appl. Crystallogr. 2000, 33, 899.

  • [105]

    G. Oszlanyi, A. Suto, Acta Crystallogr. Sect. A 2004, 60, 134.

  • [106]

    J. Lebideau, B. Bujoli, A. Jouanneaux, C. Payen, P. Palvadeau, J. Rouxel, Inorg. Chem. 1993, 32, 4617.

  • [107]

    H. Rietveld, J. Appl. Crystallogr. 1969, 2, 65.

  • [108]

    S. Sene, B. Bouchevreau, C. Martineau, C. Gervais, C. Bonhomme, P. Gaveau, F. Mauri, S. Begu, P. H. Mutin, M. E. Smith, D. Laurencin, Crystengcomm 2013, 15, 8763.

  • [109]

    Y.-Z. Zheng, G.-J. Zhou, Z. Zheng, R. E. P. Winpenny, Chem. Soc. Rev. 2014, 43, 1462.

  • [110]

    Z. Chen, Y. Zhou, L. Weng, C. Yuan, D. Zhao, Chem. Asian J. 2007, 2, 1549.

  • [111]

    S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Feerey, S. Bourrelly, P. L. Llewellyn, J. Am. Chem. Soc. 2008, 130, 15967.

  • [112]

    A. Dutta, A. K. Patra, A. Bhaumik, Microporous Mesoporous Mater. 2012, 155, 208.

  • [113]

    Y. P. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. W. Du, Electrochim. Acta 2013, 101, 201.

  • [114]

    F. Adani, M. Casciola, D. J. Jones, L. Massinelli, E. Montoneri, J. Roziere, R. Vivani, J. Mater. Chem. 1998, 8, 961.

  • [115]

    J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055.

  • [116]

    N. Agmon, Chem. Phys. Lett. 1995, 244, 456.

  • [117]

    P. Ramaswamy, N. E. Wong, B. S. Gelfand, G. K. H. Shimizu, J. Am. Chem. Soc. 2015, 137, 7640.

  • [118]

    R. M. P. Colodrero, P. Olivera-Pastor, E. R. Losilla, D. Hernandez-Alonso, M. A. G. Aranda, L. Leon-Reina, J. Rius, K. D. Demadis, B. Moreau, D. Villemin, M. Palomino, F. Rey, A. Cabeza, Inorg. Chem. 2012, 51, 7689.

  • [119]

    M. Bazaga-Garcia, R. M. P. Colodrero, M. Papadaki, P. Garczarek, J. Zon, P. Olivera-Pastor, E. R. Losilla, L. Leon-Reina, M. A. G. Aranda, D. Choquesillo-Lazarte, K. D. Demadis, A. Cabeza, J. Am. Chem. Soc. 2014, 136, 5731.

  • [120]

    N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 2011, 50, 2014.

  • [121]

    K. Užarević, I. Halasz, T. Friščić, J. Phys. Chem. Lett. 2015, 4129.

  • [122]

    C. Schmidt, M. Feyand, A. Rothkirch, N. Stock, J. Solid State Chem. 2012, 188, 44.

  • [123]

    L. Engelke, M. Schaefer, M. Schur, W. Bensch, Chem. Mater. 2001, 13, 1383.

  • [124]

    T. Friscic, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimaki, R. E. Dinnebier, Nat. Chem. 2013, 5, 66.

  • [125]

    D. Gracin, V. Strukil, T. Friscic, I. Halasz, K. Uzarevic, Angew. Chem. Int. Ed. 2014, 53, 6193.

  • [126]

    X. H. Ma, W. B. Yuan, S. E. J. Bell, S. L. James, Chem. Commun. 2014, 50, 1585.

About the article

Received: 2016-06-08

Accepted: 2016-09-13

Published Online: 2016-10-18

Published in Print: 2017-02-01



Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1971. Export Citation

Comments (0)

Please log in or register to comment.
Log in