Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)

Issues

Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution

Manuel Wilke
  • BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11, 12489 Berlin, Germany
  • Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sven Bach
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatiana E. Gorelik
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ute Kolb
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Tremel
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franziska Emmerling
  • Corresponding author
  • BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11, 12489 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/zkri-2016-1971

Abstract

Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pathway for the synthesis of divalent phosphonates as a possibility to generate new, in certain cases metastable compounds. The benefits of in situ investigation of synthesis mechanisms as well as the implementation of sophisticated methods for the structure analysis of the resulting compounds are discussed.

Keywords: ADT; mechanochemistry; phosphonates

References

  • [1]

    S. R. Batten, N. R. Champness, X. M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Ohrstrom, M. O’Keeffe, M. P. Suh, J. Reedijk, Pure Appl. Chem. 2013, 85, 1715.Google Scholar

  • [2]

    G. Alberti, U. Costantino, S. Allulli, N. Tomassini, J. Inorg. Nucl. Chem. 1978, 40, 1113.Google Scholar

  • [3]

    D. Cunningham, P. J. D. Hennelly, Inorg. Chim. Acta 1979, 37, 95.Google Scholar

  • [4]

    M. B. Dines, P. M. Digiacomo, Inorg. Chem. 1981, 20, 92.Google Scholar

  • [5]

    G. Alberti, U. Costantino, M. L. Lucianigiovagnotti, J. Chromatogr. 1979, 180, 45.Google Scholar

  • [6]

    M. D. Poojary, H. L. Hu, F. L. Campbell, A. Clearfield, Acta Crystallogr. Sect. B: Struct. Sci. 1993, 49, 996.Google Scholar

  • [7]

    K. D. Demadis, N. Stavgianoudaki, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 438, 2012.Google Scholar

  • [8]

    G. K. H. Shimizu, J. M. Taylor, K. W. Dawson, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 493, 2012.Google Scholar

  • [9]

    A. Clearfield, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 1, 2012.Google Scholar

  • [10]

    G. Cao, H. Lee, V. M. Lynch, T. E. Mallouk, Inorg. Chem. 1988, 27, 2781.Google Scholar

  • [11]

    K. J. Martin, P. J. Squattrito, A. Clearfield, Inorg. Chim. Acta 1989, 155, 7.Google Scholar

  • [12]

    G. Cao, V. M. Lynch, L. N. Yacullo, Chem. Mater. 1993, 5, 1000.Google Scholar

  • [13]

    C. Bellitto, F. Federici, A. Altomare, R. Rizzi, S. A. Ibrahim, Inorg. Chem. 2000, 39, 1803.Google Scholar

  • [14]

    T. O. Salami, X. Fan, P. Y. Zavalij, S. R. J. Oliver, Dalton Trans. 2006, 1574.Google Scholar

  • [15]

    E. M. Bauer, C. Bellitto, G. Righini, M. Colapietro, G. Portalone, M. Drillon, P. Rabu, Inorg. Chem. 2008, 47, 10945.Google Scholar

  • [16]

    J. Goura, V. Chandrasekhar, Chem. Rev. 2015, 115, 6854.Google Scholar

  • [17]

    R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 2000, 14, 2349.Google Scholar

  • [18]

    V. Chandrasekhar, P. Sasikumar, R. Boomishankar, G. Anantharamian, Inorg. Chem. 2006, 45, 3344.Google Scholar

  • [19]

    V. Chandrasekhar, L. Nagarajan, R. Clerac, S. Ghosh, S. Verma, Inorg. Chem. 2008, 47, 1067.Google Scholar

  • [20]

    V. Baskar, M. Shanmugam, E. C. Sanudo, M. Shanmugam, D. Collison, E. J. L. McInnes, Q. Wei, R. E. P. Winpenny, Chem. Commun. 2007, 1, 37.Google Scholar

  • [21]

    E. K. Brechin, R. A. Coxall, A. Parkin, S. Parsons, P. A. Tasker, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2001, 40, 2700.Google Scholar

  • [22]

    K. Slepokura, A. Piatkowska, T. Lis, Zeitschrift Fur Kristallographie 2002, 217, 614.Google Scholar

  • [23]

    M. Wilke, A. G. Buzanich, U. Reinholz, K. Rademann, F. Emmerling, Dalton Trans. 2016, 45, 9460.Google Scholar

  • [24]

    B. K. Tripuramallu, R. Kishore, S. K. Das, Polyhedron 2010, 29, 2985.Google Scholar

  • [25]

    A. Bulut, Y. Zorlu, E. Kirpi, A. Cetinkaya, M. Worle, J. Beckmann, G. Yucesan, Cryst. Growth Des. 2015, 15, 5665.Google Scholar

  • [26]

    Z. Y. Du, J. J. Huang, Y. R. Xie, H. R. Wen, J. Mol. Struct. 2009, 919, 112.Google Scholar

  • [27]

    K. R. Ma, Y. H. Kan, X. L. Wang, L. Cao, J. Cluster Sci. 2016, 27, 213.Google Scholar

  • [28]

    V. Lopez-Diaz, T. M. S. Pellizerri, M. D. Lijewski, K. Ruhlandt, J. Zubieta, Inorg. Chim. Acta 2016, 441, 109.Google Scholar

  • [29]

    J. Huang, P. Y. Liu, H. Zhu, S. S. Bao, L. M. Zheng, J. Ma, Chempluschem 2012, 77, 1087.Google Scholar

  • [30]

    R. M. P. Colodrero, P. Olivera-Pastor, A. Cabeza, M. Papadaki, K. D. Demadis, M. A. G. Aranda, Inorg. Chem. 2010, 49, 761.Google Scholar

  • [31]

    J. G. Mao, Z. K. Wang, A. Clearfield, J. Chem. Soc. Dalton Trans. 2002, 24, 4541.Google Scholar

  • [32]

    S. F. Tang, X. B. Pan, X. X. Lv, X. B. Zhao, J. Solid State Chem. 2013, 197, 139.Google Scholar

  • [33]

    J. Svoboda, V. Zima, L. Benes, K. Melanova, M. Vicek, Inorg. Chem. 2005, 44, 9968.Google Scholar

  • [34]

    L. Lin, T. J. Zhang, Y. T. Fan, D. G. Ding, H. W. Hou, J. Mol. Struct. 2007, 837, 107.Google Scholar

  • [35]

    V. Zima, J. Svoboda, L. Benes, K. Melanova, M. Trchova, J. Dybal, J. Solid State Chem. 2007, 180, 929.Google Scholar

  • [36]

    E. V. Bakhmutova, X. Ouyang, D. G. Medvedev, A. Clearfield, Inorg. Chem. 2003, 42, 7046.Google Scholar

  • [37]

    M. Wilke, L. Batzdorf, F. Fischer, K. Rademann, F. Emmerling, RSC Adv. 2016, 6, 36011.Google Scholar

  • [38]

    G. Cao, H. G. Hong, T. E. Mallouk, Acc. Chem. Res. 1992, 25, 420.Google Scholar

  • [39]

    G. Cao, H. Lee, V. M. Lynch, T. E. Mallouk, Solid State Ionics 1988, 26, 63.Google Scholar

  • [40]

    G. Cao, T. E. Mallouk, Inorg. Chem. 1991, 30, 1434.Google Scholar

  • [41]

    Y. P. Zhang, A. Clearfield, Inorg. Chem. 1992, 31, 2821.Google Scholar

  • [42]

    S. Chausson, J. M. Rueff, M. B. Lepetit, O. Perez, R. Retoux, C. Simon, L. Le Pluart, P. A. Jaffres, Eur. J. Inorg. Chem. 2012, 13, 2193.Google Scholar

  • [43]

    N. Hugot, M. Roger, J. M. Rueff, J. Cardin, O. Perez, V. Caignaert, B. Raveau, G. Rogez, P. A. Jaffres, Eur. J. Inorg. Chem. 2016, 2, 266.Google Scholar

  • [44]

    G. Cao, V. M. Lynch, J. S. Swinnea, T. E. Mallouk, Inorg. Chem. 1990, 29, 2112.Google Scholar

  • [45]

    A. H. Mahmoudkhani, V. Langer, Solid State Sci. 2001, 3, 519.Google Scholar

  • [46]

    D. M. Poojary, B. L. Zhang, A. Cabeza, M. A. G. Aranda, S. Bruque, A. Clearfield, J. Mater. Chem. 1996, 6, 639.Google Scholar

  • [47]

    H. Zhu, J. Huang, S. S. Bao, M. Ren, L. M. Zheng, Dalton Trans. 2013, 42, 14075.Google Scholar

  • [48]

    Y. P. Zhu, T. Y. Ma, Y. L. Liu, T. Z. Ren, Z. Y. Yuan, Inorg. Chem. Front. 2014, 1, 360.Google Scholar

  • [49]

    A. Clearfield, Chem. Mater. 1998, 10, 2801.Google Scholar

  • [50]

    D. M. Poojary, B. L. Zhang, P. Bellinghausen, A. Clearfield, Inorg. Chem. 1996, 35, 5254.Google Scholar

  • [51]

    D. M. Poojary, B. L. Zhang, P. Bellinghausen, A. Clearfield, Inorg. Chem. 1996, 35, 4942.Google Scholar

  • [52]

    D. M. Poojary, B. L. Zhang, A. Clearfield, J. Am. Chem. Soc. 1997, 119, 12550.Google Scholar

  • [53]

    D. K. Cao, S. Gao, L. M. Zheng, J. Solid State Chem. 2004, 177, 2311.Google Scholar

  • [54]

    B. L. Zhang, D. M. Poojary, A. Clearfield, Inorg. Chem. 1998, 37, 1844.Google Scholar

  • [55]

    S. Drumel, P. Janvier, P. Barboux, M. Bujolidoeuff, B. Bujoli, Inorg. Chem. 1995, 34, 148.Google Scholar

  • [56]

    W. Chu, Y. Y. Zhu, Z. G. Sun, C. Q. Jiao, J. Li, S. H. Sun, H. Tian, M. J. Zheng, RSC Adv. 2013, 3, 623.Google Scholar

  • [57]

    J. Lebideau, C. Payen, P. Palvadeau, B. Bujoli, Inorg. Chem. 1994, 33, 4885.Google Scholar

  • [58]

    A. K. Cheetham, G. Ferey, T. Loiseau, Angew. Chem. Int. Ed. 1999, 38, 3268.Google Scholar

  • [59]

    A. Clearfield, Curr. Opin. Solid State Mater. Sci. 2002, 6, 495.Google Scholar

  • [60]

    G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430.Google Scholar

  • [61]

    K. Maeda, Microporous Mesoporous Mater. 2004, 73, 47.Google Scholar

  • [62]

    D. L. Lohse, S. C. Sevov, Angew. Chem. Int. Ed. Engl. 1997, 36, 1619.Google Scholar

  • [63]

    R. LaDuca, D. Rose, J. R. D. DeBord, R. C. Haushalter, C. J. Oconnor, J. Zubieta, J. Solid State Chem. 1996, 123, 408.Google Scholar

  • [64]

    J. M. Taylor, A. H. Mahmoudkhani, G. K. H. Shimizu, Angew. Chem. Int. Ed. 2007, 46, 795.Google Scholar

  • [65]

    T. Sun, C. Q. Jiao, W. Z. Li, Z. G. Sun, C. Ma, Y. Y. Zhu, M. X. Ma, H. Luo, X. W. Zhang, M. L. Wang, RSC Adv. 2015, 5, 26410.Google Scholar

  • [66]

    R. Sen, D. Saha, D. Mal, P. Brandao, G. Rogez, Z. Lin, Eur. J. Inorg. Chem. 2013, 2013, 5020.Google Scholar

  • [67]

    C. Ma, C. Q. Jiao, Z. G. Sun, Y. Y. Zhu, X. W. Zhang, M. L. Wang, D. Yang, Z. Zhao, H. Y. Li, B. Xing, Rsc. Adv. 2015, 5, 79041.Google Scholar

  • [68]

    K. D. Demadis, M. Papadaki, R. G. Raptis, H. Zhao, J. Solid State Chem. 2008, 181, 679.Google Scholar

  • [69]

    B. P. Yang, J. G. Mao, J. Mol. Struct. 2007, 830, 78.Google Scholar

  • [70]

    R. M. P. Colodrero, A. Cabeza, P. Olivera-Pastor, M. Papadaki, J. Rius, D. Choquesillo-Lazarte, J. M. García-Ruiz, K. D. Demadis, M. A. G. Aranda, Cryst. Growth Des. 2011, 11, 1713.Google Scholar

  • [71]

    R. Murugavel, P. Davis, M. G. Walawalkar, Z. Anorg. Allg. Chem. 2005, 631, 2806.Google Scholar

  • [72]

    M. Feyand, A. Hubner, A. Rothkirch, D. S. Wragg, N. Stock, Inorg. Chem. 2012, 51, 12540.Google Scholar

  • [73]

    L.-H. Schilling, N. Stock, Dalton Trans. 2014, 43, 414.Google Scholar

  • [74]

    N. Stavgianoudaki, K. E. Papathanasiou, R. M. P. Colodrero, D. Choquesillo-Lazarte, J. M. Garcia-Ruiz, A. Cabeza, M. A. G. Aranda, K. D. Demadis, Crystengcomm 2012, 14, 5385.Google Scholar

  • [75]

    N. Stock, T. Bein, Angew. Chem. Int. Ed. 2004, 43, 749.Google Scholar

  • [76]

    N. Stock, Microporous Mesoporous Mater. 2010, 129, 287.Google Scholar

  • [77]

    P. Maniam, N. Stock, in Metal Phosphonate Chemistry: From Synthesis to Applications, The Royal Society of Chemistry, Cambridge, p. 87, 2012.Google Scholar

  • [78]

    S. Bauer, T. Bein, N. Stock, Inorg. Chem. 2005, 44, 5882.Google Scholar

  • [79]

    N. Stock, T. Bein, J. Mater. Chem. 2005, 15, 1384.Google Scholar

  • [80]

    S. Bauer, N. Stock, Angew. Chem. Int. Ed. 2007, 46, 6857.Google Scholar

  • [81]

    S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413.Google Scholar

  • [82]

    P. Balaz, M. Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 2013, 42, 7571.Google Scholar

  • [83]

    E. Boldyreva, Chem. Soc. Rev. 2013, 42, 7719.Google Scholar

  • [84]

    J. F. Fernandez-Bertran, Pure Appl. Chem. 1999, 71, 581.Google Scholar

  • [85]

    L. Batzdorf, F. Fischer, M. Wilke, K. J. Wenzel, F. Emmerling, Angew. Chem. Int. Ed. 2015, 54, 1799.Google Scholar

  • [86]

    U. Kolb, T. Gorelik, C. Kubel, M. T. Otten, D. Hubert, Ultramicroscopy 2007, 107, 507.Google Scholar

  • [87]

    D. L. Zhang, P. Oleynikov, S. Hovmoller, X. D. Zou, Zeitschrift Fur Kristallographie 2010, 225, 94.Google Scholar

  • [88]

    E. van Genderen, M. T. B. Clabbers, P. P. Das, A. Stewart, I. Nederlof, K. C. Barentsen, Q. Portillo, N. S. Pannu, S. Nicolopoulos, T. Gruene, J. P. Abrahams, Acta Crystallogr. A-Found. Adv. 2016, 72, 236.Google Scholar

  • [89]

    I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich, Mineralogical Magazine 2010, 74, 159.Google Scholar

  • [90]

    C. S. Birkel, E. Mugnaioli, T. Gorelik, U. Kolb, M. Panthoefer, W. Tremel, J. Am. Chem. Soc. 2010, 132, 9881.Google Scholar

  • [91]

    J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb, A. Corma, Science 2011, 333, 1131.Google Scholar

  • [92]

    M. Gemmi, I. Campostrini, F. Demartin, T. E. Gorelik, C. M. Gramaccioli, Acta Crystallogr. Sect. B: Struct. Sci. 2012, 68, 15.Google Scholar

  • [93]

    T. Willhammar, J. Sun, W. Wan, P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martinez, F. Rey, A. Corma, Nat. Chem. 2012, 4, 188.Google Scholar

  • [94]

    U. Kolb, T. E. Gorelik, E. Mugnaioli, A. Stewart, Polym. Rev. 2010, 50, 385.Google Scholar

  • [95]

    T. E. Gorelik, J. van de Streek, A. F. M. Kilbinger, G. Brunklaus, U. Kolb, Acta Crystallogr. Sect. B: Struct. Sci. 2012, 68, 171.Google Scholar

  • [96]

    C. Forster, T. E. Gorelik, U. Kolb, V. Ksenofontov, K. Heinze, Eur. J. Inorg. Chem. 2015, 6, 920.Google Scholar

  • [97]

    T. E. Gorelik, C. Czech, S. M. Hammer, M. U. Schmidt, Crystengcomm 2016, 18, 529.Google Scholar

  • [98]

    R. Henderson, Quart. Rev. Biophys. 1995, 28, 171.Google Scholar

  • [99]

    M. Etter, R. E. Dinnebier, Z. Anorg. Allg. Chem. 2014, 640, 3015.Google Scholar

  • [100]

    W. I. F. David, K. Shankland, J. van de Streek, E. Pidcock, W. D. S. Motherwell, J. C. Cole, J. Appl. Crystallogr. 2006, 39, 910.Google Scholar

  • [101]

    A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 2013, 46, 1231.Google Scholar

  • [102]

    V. Favre-Nicolin, R. Cerny, J. Appl. Crystallogr. 2002, 35, 734.Google Scholar

  • [103]

    C. Giacovazzo, Acta Crystallogr. Sect. A 1996, 52, 331.Google Scholar

  • [104]

    A. A. Coelho, J. Appl. Crystallogr. 2000, 33, 899.Google Scholar

  • [105]

    G. Oszlanyi, A. Suto, Acta Crystallogr. Sect. A 2004, 60, 134.Google Scholar

  • [106]

    J. Lebideau, B. Bujoli, A. Jouanneaux, C. Payen, P. Palvadeau, J. Rouxel, Inorg. Chem. 1993, 32, 4617.Google Scholar

  • [107]

    H. Rietveld, J. Appl. Crystallogr. 1969, 2, 65.Google Scholar

  • [108]

    S. Sene, B. Bouchevreau, C. Martineau, C. Gervais, C. Bonhomme, P. Gaveau, F. Mauri, S. Begu, P. H. Mutin, M. E. Smith, D. Laurencin, Crystengcomm 2013, 15, 8763.Google Scholar

  • [109]

    Y.-Z. Zheng, G.-J. Zhou, Z. Zheng, R. E. P. Winpenny, Chem. Soc. Rev. 2014, 43, 1462.Google Scholar

  • [110]

    Z. Chen, Y. Zhou, L. Weng, C. Yuan, D. Zhao, Chem. Asian J. 2007, 2, 1549.Google Scholar

  • [111]

    S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Feerey, S. Bourrelly, P. L. Llewellyn, J. Am. Chem. Soc. 2008, 130, 15967.Google Scholar

  • [112]

    A. Dutta, A. K. Patra, A. Bhaumik, Microporous Mesoporous Mater. 2012, 155, 208.Google Scholar

  • [113]

    Y. P. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. W. Du, Electrochim. Acta 2013, 101, 201.Google Scholar

  • [114]

    F. Adani, M. Casciola, D. J. Jones, L. Massinelli, E. Montoneri, J. Roziere, R. Vivani, J. Mater. Chem. 1998, 8, 961.Google Scholar

  • [115]

    J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055.Google Scholar

  • [116]

    N. Agmon, Chem. Phys. Lett. 1995, 244, 456.Google Scholar

  • [117]

    P. Ramaswamy, N. E. Wong, B. S. Gelfand, G. K. H. Shimizu, J. Am. Chem. Soc. 2015, 137, 7640.Google Scholar

  • [118]

    R. M. P. Colodrero, P. Olivera-Pastor, E. R. Losilla, D. Hernandez-Alonso, M. A. G. Aranda, L. Leon-Reina, J. Rius, K. D. Demadis, B. Moreau, D. Villemin, M. Palomino, F. Rey, A. Cabeza, Inorg. Chem. 2012, 51, 7689.Google Scholar

  • [119]

    M. Bazaga-Garcia, R. M. P. Colodrero, M. Papadaki, P. Garczarek, J. Zon, P. Olivera-Pastor, E. R. Losilla, L. Leon-Reina, M. A. G. Aranda, D. Choquesillo-Lazarte, K. D. Demadis, A. Cabeza, J. Am. Chem. Soc. 2014, 136, 5731.Google Scholar

  • [120]

    N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 2011, 50, 2014.Google Scholar

  • [121]

    K. Užarević, I. Halasz, T. Friščić, J. Phys. Chem. Lett. 2015, 4129.Google Scholar

  • [122]

    C. Schmidt, M. Feyand, A. Rothkirch, N. Stock, J. Solid State Chem. 2012, 188, 44.Google Scholar

  • [123]

    L. Engelke, M. Schaefer, M. Schur, W. Bensch, Chem. Mater. 2001, 13, 1383.Google Scholar

  • [124]

    T. Friscic, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimaki, R. E. Dinnebier, Nat. Chem. 2013, 5, 66.Google Scholar

  • [125]

    D. Gracin, V. Strukil, T. Friscic, I. Halasz, K. Uzarevic, Angew. Chem. Int. Ed. 2014, 53, 6193.Google Scholar

  • [126]

    X. H. Ma, W. B. Yuan, S. E. J. Bell, S. L. James, Chem. Commun. 2014, 50, 1585.Google Scholar

About the article

Received: 2016-06-08

Accepted: 2016-09-13

Published Online: 2016-10-18

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1971.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in