Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

Imago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198

Online
ISSN
2196-7105
See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)

Issues

Snapshots of calcium carbonate formation – a step by step analysis

Michael Dietzsch
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128 Mainz, Germany
  • Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
/ Iryna Andrusenko
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128 Mainz, Germany
/ Robert Branscheid
  • Institut für Physikalische Chemie, Johannes Gutenberg-Universität, Welderweg 15, D-55099 Mainz, Germany
/ Franziska Emmerling
  • Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D–12489 Berlin, Germany
/ Ute Kolb
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128 Mainz, Germany
  • Institute of Applied Geosciences, Darmstadt University of Technology, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
/ Wolfgang Tremel
  • Corresponding author
  • Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128 Mainz, Germany
  • Email:
Published Online: 2017-02-03 | DOI: https://doi.org/10.1515/zkri-2016-1973

Abstract

Recent advances in our understanding of CaCO3 nucleation from solution have provoked new and challenging questions. We have studied CaCO3 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate reproducibility. TEM snapshots taken during different stages of the precipitation process identified different phases and morphologies. At a high level of supersaturation homogeneous nucleation in solution led to the formation of amorphous CaCO3 particles (Ø≈30 nm), which transformed via vaterite to calcite. Nucleation occurred uniformly in solution which appears to be unique for the CaCO3 system. In the presence of Na-polymethacrylate (Na-PMA), heterogeneous nucleation was suppressed and Ca-polymer aggregates were formed in the prenucleation stage. Beyond a critical threshold supersaturation CaCO3 particles formed in solution outside of these aggregates. The nucleation process resembled that without additive, indicating that Na-PMA exerts only a minor effect on the CaCO3 nucleation. In the postnucleation stage, the polymer led to the formation of extended liquid-like networks, which served as a precursor phase for solid ACC particles that formed alongside the network.

This article offers supplementary material which is provided at the end of the article.

Keywords: biomineralization; calcium carbonate; nucleation; polymer additives

References

  • [1]

    J. Rieger, M. Kellermeier, L. Nicoleau, Angew. Chem. Int. Ed. 2014, 53, 12380.

  • [2]

    E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier, M. Panthöfer, W. Tremel, U. Kolb, Angew. Chem. Int. Ed. 2012, 51, 7041.

  • [3]

    L. Brecevic, A. E. Nielsen, J. Cryst. Growth 1989, 98, 504.

  • [4]

    A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12096.

  • [5]

    J. W. Morse, R. S. Arvidson, A. Lüttge, Chem. Rev. 2007, 107, 342.

  • [6]

    D. Gebauer, A. Völkel, H. Cölfen, Science 2008, 322, 1819.

  • [7]

    T. Wang, H. Cölfen, M. Antonietti, J. Am. Chem. Soc. 2005, 127, 3246.

  • [8]

    R. Becker, W. Döring, Ann. Phys. 1935, 416, 719.

  • [9]

    W. Kleber, Krist. Techn. 1967, 2, 5.

  • [10]

    D. Gebauer, H. Cölfen, Nano Today 2011, 6, 564.

  • [11]

    D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergström, H. Cölfen, Chem. Soc. Rev. 2014, 43, 2348.

  • [12]

    T. Liu, E. Diemann, H. Li, A. W. M. Dress, A. Müller, Nature 2003, 426, 59.

  • [13]

    H. Schnöckel, H. Köhnlein, Polyhedron 2002, 21, 489.

  • [14]

    G. Furrer, B. L. Phillips, K.-U. Ulrich, R. Pothig, W. H. Casey, Science 2002, 297, 2245.

  • [15]

    G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Mayer, G. H. M. Calis, J. W. A. van der Velden, Chem. Ber. 1981, 114, 3634.

  • [16]

    P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430.

  • [17]

    V. N. Soloviev, A. Eichhöfer, D. Fenske, U. Banin, J. Am. Chem. Soc. 2001, 123, 2354.

  • [18]

    E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, N. A. J. M. Sommerdijk, Science 2009, 323, 1455.

  • [19]

    S. E. Wolf, L. Müller, R. Barrea, C. J. Kampf, J. Leiterer, U. Panne, T. Hoffmann, F. Emmerling, W. Tremel, Nanoscale 2011,3, 1158.

  • [20]

    R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley, D. Gebauer, Nat. Commun. 2011, 2, 590.

  • [21]

    L. B. Gower, D. J. Odom, J. Cryst. Growth 2000, 210, 719.

  • [22]

    M. H. Nielsen, S. Aloni, J. J. DeYoreo, Science 2014, 345, 1158.

  • [23]

    M. Faatz, F. Gröhn, G. Wegner, Adv. Mater. 2004, 16, 996.

  • [24]

    E. Favvas, A. C. Mitropoulos, J. Eng. Sci. Technol. Rev. 2008, 1, 25.

  • [25]

    J. Rieger, T. Frechen, G. Cox, W. Heckmann, C. Schmidt, J. Thieme, Faraday Discuss. 2007, 136, 265.

  • [26]

    S. E. Wolf, J. Leiterer, M. Kappl, F. Emmerling, W. Tremel, J. Am. Chem. Soc. 2008, 130, 12342.

  • [27]

    S. E. Wolf, J. Leiterer, V. Pipich, R. Barrea, F. Emmerling, W. Tremel, J. Am. Chem. Soc 2011, 133, 12642.

  • [28]

    C. A. Smolders, J. J. Aartsen, A. Steenbergen, Kolloid-Z.u.Z. Polymere 1971, 243, 14.

  • [29]

    N. Kuwahara, K. Kubota, Phys. Rev. A 1992, 45, 7385.

  • [30]

    J. Langer, Ann. Phys. 1971, 65, 53.

  • [31]

    K. Hono, K.-I. Hirano, Phase Transitions 1987, 10, 223.

  • [32]

    J. Liu, S. Pancera, V. Boyko, A. Shukla, T. Narayanan, K. Huber, Langmuir 2010, 26, 17405.

  • [33]

    J. Bolze, B. Peng, N. Dingenouts, P. Panine, T. Narayanan, M. Ballauff, Langmuir 2002, 18, 8364.

  • [34]

    D. Pontoni, J. Bolze, N. Dingenouts, T. Narayanan, M. Ballauff, J. Phys. Chem. B 2003, 107, 5123.

  • [35]

    J. Bolze, D. Pontoni, M. Ballauff, T. Narayanan, H. Cölfen, J. Colloid Interface Sci. 2004, 277, 84.

  • [36]

    J. Liu, J. Rieger, K. Huber, Langmuir 2008, 24, 8262.

  • [37]

    J. Liu, S. Pancera, V. Boyko, J. Gummel, R. Nayuk, K. Huber, Langmuir 2012, 28, 3593.

  • [38]

    D. Li, M. H. Nielsen, J. J. DeYoreo, Methods Enzymol. 2013, 532, 147.

  • [39]

    M. M. Reddy, A. R. Hoch, J. Colloid Interface Sci. 2001, 235, 365.

  • [40]

    G. Xu, N. Yao, I. A. Aksay, J. T. Groves, J. Am. Chem. Soc. 1998, 120, 11977.

  • [41]

    J. Rieger, J. Thieme, C. Schmidt, Langmuir 2000, 16, 8300.

  • [42]

    A. Sugawara, T. Ishii, T. Kato, Angew. Chem. 2003, 115, 5457.

  • [43]

    D. Volkmer, M. Harms, L. Gower, A. Ziegler, Angew. Chem. 2005, 117, 645.

  • [44]

    Z. Amjad, Ed. Water Soluble Polymers, Kluwer Academic Publishers, Boston, 2002. [Crossref]

  • [45]

    S. -C. Huang, K. Naka, Y. A. Chujo, Langmuir 2007, 23, 12086.

  • [46]

    D. Gebauer, H. Cölfen, A. Verch, M. Antonietti, Adv. Mater. 2009, 21, 435.

  • [47]

    A. Verch, D. Gebauer, M. Antonietti, H. Cölfen, Phys. Chem. Chem. Phys. 2011, 13, 16811.

  • [48]

    A. Heiss, J. Biol. Chem. 2003, 278, 13333.

  • [49]

    A. Heiss, V. Pipich, W. Jahnen-Dechent, D. Schwahn, Biophys. J. 2010, 99, 3986.

  • [50]

    M. Balz, H. A. Therese, J. Li, J. S. Gutmann, M. Kappl, L. Nasdala, W. Hofmeister, H. -J. Butt, W. Tremel, Adv. Funct. Mater. 2005, 15, 683.

  • [51]

    T. Schüler, W. Tremel, Chem. Comm. 2011, 47, 5208.

  • [52]

    K. K. Sand, J. D. Rodriguez-Blanco, E. Makovicky, L. G. Benning, S. L. S. Stipp, Cryst. Growth Des. 2012, 12, 842.

  • [53]

    S.-F. Chen, H. Cölfen, M. Antonietti, S.-H. Yu, Chem. Comm. 2013, 49, 9564.

  • [54]

    F. Manoli, E. Dalas, J. Cryst. Growth 2000, 218, 359.

  • [55]

    S. R. Dickinson, K. M. McGrath, J. Mater. Chem. 2003, 13, 928.

  • [56]

    M. Faatz, PhD Dissertation, University of Mainz, 2005, p. 46.

  • [57]

    H. Schäfer, Angew. Chem. Int. Ed. 1971, 10, 43.

  • [58]

    J. D. Rodriguez-Blanco, S. Shaw, L. G. Benning, Nanoscale 2011, 3, 265.

  • [59]

    A. Gehl, PhD Dissertation, University of Mainz, 2015.

  • [60]

    A. Gehl, M. Dietzsch, M. Mondeshki, S. Bach, T. Häger, B. Barton, U. Kolb, W. Tremel. Chem. Eur. J. 2015, 21, 18192.

  • [61]

    M. Hajir, G. Graf, W. Tremel, Chem. Commun. 2014, 50, 6534.

  • [62]

    J. Ihli, Y.-W. Wang, B. Cantaert, Y.-Y- Kim, D. C. Green, P. H. H. Bomans, N. A. J. M. Sommerdijk, F. C. Meldrum, Chem. Mater. 2015, 27, 3999.

  • [63]

    S. Bach, M. Panthöfer, M. Dietzsch, R. Meffert, F. Emmerling, V. Ribeiro Celinski, J. Schmedt auf der Günne, W. Tremel, J. Am. Chem. Soc. 2015, 137, 2285.

  • [64]

    K. Huber, J. Phys. Chem 1993, 97, 9825.

  • [65]

    Y. Ikeda, M. Beer, M. Schmidt, K. Huber, Macromolecules 1998, 31, 728.

  • [66]

    R. Schweins, K. Huber, Eur. Phys. J. E 2001, 5, 117.

  • [67]

    C. G. Sinn, R. Dimova, M. Antonietti, Macromolecules 2004, 37, 3444.

  • [68]

    M. Dietzsch, M. Barz, T. Schüler, S. Klassen, M. Schreiber, M. Susewind, N. Loges, N. Hellmann, M. Fritz, P. Theato, K. Fischer, A. Kühnle, M. Schmidt, R. Zentel, W. Tremel, Langmuir 2013, 39, 3080.

  • [69]

    L. B. Gower, Chem. Rev. 2008, 108, 4551.

  • [70]

    M. A. Bewernitz, D. Gebauer, J. Long, H. Cölfen, L. B. Gower, Faraday Discuss. 2012, 159, 291.

About the article

Received: 2016-06-04

Accepted: 2016-12-05

Published Online: 2017-02-03

Published in Print: 2017-02-01



Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1973. Export Citation

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in