Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3

Issues

Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation

Günther Thiele / Silke Santner
  • Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefanie Dehnen
  • Corresponding author
  • Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-29 | DOI: https://doi.org/10.1515/zkri-2016-1976

Abstract

The formation and transformation of crystalline chalcogenido metalates in ionic liquids as solvents is discussed as a new synthetic approach for the generation of novel materials. A comparison to conventional solvothermal reactions, classical high-temperature syntheses and chemical solution based approaches in common is discussed.

Keywords: chalcogenides; clusters; ionothermal reactions; reactions in solution; solvothermal reactions

References

  • [1]

    Y.-F. Song, R. Tsunashima. Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 2012, 41, 7384.Google Scholar

  • [2]

    T. Irie, S. Endo, S. Kimura. Electrical properties of p- and n-type CuInSe2 single crystals. J. Appl. Phys. 1978, 18, 1303.Google Scholar

  • [3]

    H. Li, C. D. Malliakas, Z. Liu, J. A. Peters, M. Sebastian, L. Zhao, D. Y. Chung, B. W. Wessels, M. G. Kanatzidis. Investigation of semi-insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 alloy for hard radiation detection. Cryst. Growth Des. 2014, 14, 5949.Google Scholar

  • [4]

    W. S. Sheldrick, M. Wachhold. Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Ed. Engl. 1997, 36, 206.Google Scholar

  • [5]

    A. Stein, S. W. Keller, T. E. Mallouk. Turning down the heat: design and mechanism in solid-state syntesis. Science 1993, 259, 1558.Google Scholar

  • [6]

    J. Androulakis, S. C. Peter, H. Li, C. D. Malliakas, J. A. Peters, Z. Liu, B. W. Wessels, J.-H. Song, H. Jin, A. J. Freeman, M. G. Kanatzidis. Dimensional reduction: a design tool for new radiation detection materials. Adv. Mater. 2011, 23, 4163.Google Scholar

  • [7]

    G. Thiele, L. Vondung, C. Donsbach, S. Pulz, S. Dehnen. Organic cation and complex cation-stabilized (Poly-)selenides, [Cation]x(Sey)z: diversity in structures and properties. Z. Anorg. Allg. Chem. 2014, 640, 2684.Google Scholar

  • [8]

    G. Thiele, N. Lichtenberger, R. Tonner, S. Dehnen. Syntheses, structures and electronic properties of a new series of tellurides of the type [Sequestrated Cation]2[Tex] (x = 1–4). Z. Anorg. Allg. Chem. 2013, 639, 2809.Google Scholar

  • [9]

    G. Thiele, L. Vondung, S. Dehnen. β-K2Se2 and K2Se4: missing links in the binary system K-Se. Z. Kristallogr. 2016, 231, 257.Google Scholar

  • [10]

    G. Thiele, S. Santner, C. Donsbach, M. Assmann, M. Müller, S. Dehnen. Solvothermal and ionothermal syntheses and structures of amine- and/or (Poly-)Chalcogenide coordinated metal complexes. Z. Kristallogr. 2014, 229, 489.Google Scholar

  • [11]

    C. Donsbach, G. Thiele, L. H. Finger, J. Sundermeyer, S. Dehnen. Mercurates from a revised ionothermal synthesis route: the pseudo-flux approach. Inorg. Chem. 2016, 55, 6725.Google Scholar

  • [12]

    K. O. Klepp. Darstellung und Kristallstruktur von K2Sn2S5 und K2Sn2Se5. Z. Naturforsch. 1992, 47b, 197.Google Scholar

  • [13]

    Y. Lin, D. Xie, W. Massa, L. Mayrhofer, S. Lippert, B. Evers, A. Chernikov, M. Koch, S. Dehnen. Reversible changes in structural dimensionality of selenostannates in ionic liquids: formation, structures, stability and photocunductivity. Chem. Eur. J. 2013, 19, 8806.Google Scholar

  • [14]

    G. Thiele, L. Vondung, S. Dehnen. About the syntheses of chalcogenidometalates by in-situ reduction with elemental alkali metals. Z. Anorg. Allg. Chem. 2015, 641, 247.Google Scholar

  • [15]

    G. Thiele, C. Donsbach, R. Riedel, M. Marsch, K. Harms, S. Dehnen. Smallest molecular chalcogenidometalate anions of the heaviest metals: syntheses, structures, and their interconversion. Dalton Trans. 2016, 45, 5958.Google Scholar

  • [16]

    G. Thiele, T. Krüger, S. Dehnen. K4[PbSe4]·en·NH3: a non-oxide, non-halide inorganic lead(IV) compound. Angew. Chem. Int. Ed. 2014, 53, 4704.Google Scholar

  • [17]

    G. Thiele, S. Lippert, F. Fahrnbauer, P. Bron, O. Oeckler, A. Rahimi-Iman, M. Koch, B. Roling, S. Dehnen. K2Hg2Se3: large-scale synthesis of a photoconductor material prototype with a columnar polyanionic substructure. Chem. Mater. 2015, 27, 4114.Google Scholar

  • [18]

    G. Thiele, C. Donsbach, I. Nußbruch, S. Dehnen. Combining solid state and solution based techniques: synthesis and reactivity of chalcogenidoplumbates(II or IV). J. Vis. Exp. 2016, in press.Google Scholar

  • [19]

    G. Thiele, M. Balmer, S. Dehnen. Synthesis, structure and electronic situation of [Rh6Te8(PPh3)6]·4C6H6. Z. Naturforsch. 2016, 71b, 391.Google Scholar

  • [20]

    G. Thiele, Z. You, S. Dehnen. Molecular CHEVREL-like clusters [(RhPPh3)6(μ-Se)8] and [Pd6(μ-Te)8]4–. Inorg. Chem. 2015, 54, 2491.Google Scholar

  • [21]

    G. Thiele, Y. Franzke, F. Weigend, S. Dehnen. μ-PbSe: a heavy CO homologue as an unexpected ligand. Angew. Chem. Int. Ed. 2015, 54, 11283.Google Scholar

  • [22]

    S. Santner, J. Heine, S. Dehnen. Synthesis of crystalline chalcogenides in ionic liquids. Angew. Chem. Int. Ed. 2016, 54, 886.Google Scholar

  • [23]

    W.-W. Xiong, J.-R. Li, B. Hu, B. Tan, R.-F. Li, X.-Y. Huang. Largest discrete dupertetrahedral clusters synthesized in ionic liquids. Chem. Sci. 2012, 3, 1200.Google Scholar

  • [24]

    Y. Lin, W. Massa, S. Dehnen. “Zeoball”: a molecular zeolite-related anion with spherical topology. J. Am. Chem. Soc. 2012, 134, 4497.Google Scholar

  • [25]

    G. Thiele, B. Wagner, S. Dehnen. Solvothermal reactions in and with nitriles. Eur. J. Inorg. Chem. 2015, 2015, 5322.Google Scholar

  • [26]

    S. Heimann, G. Thiele, S. Dehnen. Nitrile functionalized organogermane chalcogenide clusters with hetero-(nor-)adamantane cores. J. Organomet. Chem. 2016, 813, 36.Google Scholar

About the article

Received: 2016-06-10

Accepted: 2016-07-24

Published Online: 2016-08-29

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 47–54, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1976.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in