Jump to ContentJump to Main Navigation
Show Summary Details

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR increased in 2015: 2.560
Rank 8 out of 26 in category Cristallography in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198
Impact per Publication (IPP) 2015: 1.834

Online
ISSN
2196-7105
See all formats and pricing
Just Accepted

Issues

Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts

Thomas Martin
  • Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
/ Paul Niemietz
  • Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
/ Dominik Greim
  • Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
/ Philipp Ectors
  • Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
/ Jürgen Senker
  • Corresponding author
  • Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
  • Email:
/ Dirk Zahn
  • Corresponding author
  • Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
  • Email:
/ Josef Breu
  • Corresponding author
  • Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
  • Email:
Published Online: 2016-08-17 | DOI: https://doi.org/10.1515/zkri-2016-1977

Abstract

The amphiphilic nature of benzoic acid, benzoates and benzamide causes an unexpected rich polymorphism. Featuring rather rigid and small molecular structures these compounds are ideal model systems for gaining a more fundamental understanding of molecular polymorphism by systematic and concerted investigations. The hydrophilic head allows for hydrogen bonding while the phenyl moiety gives rise to various π-stacking modes. Variations of hydrogen bonding versus π-stacking modes give rise to four polymorphs of benzamide. The central synthon in all phases is a dimer where hydrophilic units form double hydrogen bonds. As suggested by MD simulations of the nucleation process, variations of the crystallization conditions trigger whether the first self-assembly occurs via the hydrophilic head or the hydrophophic tail groups. Based on NMR crystallographic investigations for the co-crystallization of benzamide with benzoic acid, we observed yet another variation of the balance of the two dominating intermolecular interactions leading to the formation of a 1:1 co-crystal. The average crystal structure resembles the packing motive of pure benzoic acid with alternating ribbons of homogenous benzamide and benzoic acid dimers. For alkali-benzoate salts a coordination dilemma arises that is of general importance for many active pharmaceutical ingredients (APIs). A 1:1 stoichiometry requires condensation of coordination polyhedra of small inorganic cations which in turn causes steric stress that varies with the relative volumes of cation and anion. Interestingly, one way of resolving the dilemma is microphase separation which is directly related to the amphiphilic character of benzoate.

This article offers supplementary material which is provided at the end of the article.

Keywords: amphiphilic molecules; benzamide; benzoate; benzoic acid; co-crystal; crystal structure; polymorphism

References

  • [1]

    J. Bernstein, Polymorphism of dyes and pigments, in Polymorph. Mol. Cryst., Oxford University Press, Oxford, p. 257, 2007.

  • [2]

    K. Kadish, R. Guilard, K. M. Smith, The Porphyrin Handbook: Applications of Phthalocyanines, Elsevier Science, 2012.

  • [3]

    J. M. Oyarzún, Pigment Processing: Physico-Chemical Principles, Vincentz Network GmbH & Co KG, 2000.

  • [4]

    B. Olenik, G. Thielking, Polymorphism and the organic solid state: influence on the Optimization of Agrochemicals, in Mod. Methods Crop Prot. Res., Wiley-VCH, p. 249, 2012.

  • [5]

    R. J. Davey, N. Blagden, G. D. Potts, R. Docherty, Polymorphism in molecular crystals: Stabilization of a metastable form by conformational mimicry. J. Am. Chem. Soc. 1997, 119, 1767.

  • [6]

    S. R. Hall, P. V. Kolinsky, R. Jones, S. Allen, P. Gordon, B. Bothwell, D. Bloor, P. A. Norman, M. Hursthouse, A. Karaulov, J. Baldwin, M. Goodyear, D. Bishop, Polymorphism and nonlinear optical activity in organic crystals. J. Cryst. Growth 1986, 79, 745.

  • [7]

    W. Wang, M. Aggarwal, J. Choi, T. Gebre, A. D. Shields, B. G. Penn, D. O. Frazier, Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes. J. Cryst. Growth 1999, 198–199, 578.

  • [8]

    J. Haleblian, W. McCrone, Pharmaceutical applications of polymorphism. J. Pharm. Sci. 1969, 58, 911.

  • [9]

    R. Hilfiker, Polymorphism: In the Pharmaceutical Industry, John Wiley & Sons, 2006.

  • [10]

    J. Bernstein, Polymorphism in Molecular Crystals, Oxford University Press, Oxford, 2007.

  • [11]

    J. D. Dunitz, J. Bernstein, Disappearing polymorphs. Acc. Chem. Res. 1995, 28, 193.

  • [12]

    D.-K. Bučar, R. W. Lancaster, J. Bernstein, Disappearing polymorphs revisited. Angew. Chem. Int. Ed. 2015, 54, 6972.

  • [13]

    E. Gibney, Software predicts slew of fiendish crystal structures. Nature 2015, 527, 20.

  • [14]

    W. Ostwald, Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289.

  • [15]

    U. Kolb, T. Gorelik, C. Kübel, M. T. Otten, D. Hubert, Towards automated diffraction tomography: part I – Data acquisition. Ultramicroscopy 2007, 107, 507.

  • [16]

    U. Kolb, T. Gorelik, M. T. Otten, Towards automated diffraction tomography. Part II – Cell parameter determination. Ultramicroscopy 2008, 108, 763.

  • [17]

    L. Seyfarth, J. Seyfarth, B. V. Lotsch, W. Schnick, J. Senker, Tackling the stacking disorder of melon–structure elucidation in a semicrystalline material. Phys. Chem. Chem. Phys. 2010, 12, 2227.

  • [18]

    C. Martineau, J. Senker, F. Taulelle, NMR crystallography, annual reports on NMR spectroscopy. Annu. Reports NMR Spectrosc. 2014, 82, 1.

  • [19]

    M. Schmidt, C. S. Zehe, R. Siegel, J. U. Heigl, C. Steinlein, H.-W. Schmidt, J. Senker, NMR-crystallographic study of two-dimensionally self-assembled cyclohexane-based low-molecular-mass organic compounds. CrystEngComm 2013, 15, 8784.

  • [20]

    M. Schmidt, J. J. Wittmann, R. Kress, D. Schneider, S. Steuernagel, H.-W. Schmidt, J. Senker, Crystal structure of a highly efficient clarifying agent for isotactic polypropylene. Cryst. Growth Des. 2012, 12, 2543.

  • [21]

    F. Wöhler, J. F. von Liebig, Untersuchungen über das Radikal der Benzoesäure. Ann. Der Pharm. 1832, 3, 249.

  • [22]

    B. R. Penfold, J. C. B. White, The crystal and molecular structure of benzamide. Acta Crystallogr. 1959, 12, 130.

  • [23]

    J. Thun, L. Seyfarth, J. Senker, R. E. Dinnebier, J. Breu, Polymorphism in benzamide: Solving a 175-year-old riddle. Angew. Chem. Int. Edit. 2007, 46, 6729.

  • [24]

    P. Ectors, D. Ectors, D. Zahn, Structure and interactions in benzamide molecular crystals. Mol. Simul. 2013, 39, 1079.

  • [25]

    J. Thun, M. Schoeffel, J. Breu, Crystal structure prediction could have helped the experimentalists with polymorphism in benzamide. Mol. Simul. 2008, 34, 1359.

  • [26]

    D. M. Benoit, P. Ectors, P. Duchstein, J. Breu, D. Zahn, A new polymorph (IV) of benzamide: structural characterization and mechanism of the I↔IV phase transition. Chem. Phys. Lett. 2011, 514, 274.

  • [27]

    C. Butterhof, T. Martin, P. Ectors, D. Zahn, P. Niemietz, J. Senker, J. Breu, Thermoanalytical evidence of metastable molecular defects in form I of benzamide. Cryst. Growth Des. 2012, 12, 5365.

  • [28]

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougous-sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simu-lations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

  • [29]

    P. Ectors, D. Zahn, Analysis of the molecular interactions governing the polymorphism of benzamide – a guide to syntheses? Phys. Chem. Chem. Phys. 2013, 15, 9219.

  • [30]

    K. E. Johansson, J. van de Streek, Revision of the crystal structure of the first molecular polymorph in history. Cryst. Growth Des. 2016, 16, 1366.

  • [31]

    W. I. F. David, K. Shankland, C. R. Pulham, N. Blagden, R. J. Davey, M. Song, Polymorphism in benzamide. Angew. Chem. Int. Edit. 2005, 44, 7032.

  • [32]

    P. Ectors, P. Duchstein, D. Zahn, Nucleation mechanisms of a polymorphic molecular crystal: solvent-dependent structural evolution of benzamide aggregates. Cryst. Growth Des. 2014, 14, 2972.

  • [33]

    J. Anwar, D. Zahn, Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew. Chem. Int. Ed. 2011, 50, 1996.

  • [34]

    A. Kawska, J. Brickmann, R. Kniep, O. Hochrein, D. Zahn, An atomistic simulation scheme for modeling crystal formation from solution. J. Chem. Phys. 2006, 124, 024513.

  • [35]

    P. Ectors, P. Duchstein, D. Zahn, From oligomers towards a racemic crystal: molecular simulation of DL -norleucine crystal nucleation from solution. CrystEngComm. 2015, 17, 6884.

  • [36]

    P. Ectors, J. Anwar, D. Zahn, Two-step nucleation rather than self-poisoning: an unexpected mechanism of asymmetrical molecular crystal growth. Cryst. Growth Des. 2015, 15, 5118.

  • [37]

    T. Milek, P. Duchstein, G. Seifert, D. Zahn, Motif reconstruction in clusters and layers: benchmarks for the kawska-zahn approach to model crystal formation. ChemPhysChem. 2010, 11, 847.

  • [38]

    J. Bernstein, R. J. Davey, J.-O. Henck, Concomitant polymorphs. Angew. Chem. Int. Ed. 1999, 38, 3440.

  • [39]

    J. Thun, L. Seyfarth, C. Butterhof, J. Senker, R. E. Dinnebier, J. Breu, Wöhler and Liebig revisited: 176 years of polymorphism in benzamide – and the story still continues! †. Cryst. Growth Des. 2009, 9, 2435.

  • [40]

    T. Furuhara, T. Maki, Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation. Mater. Sci. Eng. A 2001, 312, 145.

  • [41]

    V. I. Levitas, B. F. Henson, L. B. Smilowitz, B. W. Asay, Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 2004, 92, 235702.

  • [42]

    H. G. Brittain, Vibrational spectroscopic studies of cocrystals and salts. 1. The benzamide–benzoic acid system. Cryst. Growth Des. 2009, 9, 2492.

  • [43]

    C. C. Seaton, A. Parkin, Making benzamide cocrystals with benzoic acids: the influence of chemical structure. Cryst. Growth Des. 2011, 11, 1502.

  • [44]

    M. H. Levitt, D. M. Grant, R. K. Harris, J. Wiley, Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR, 2002.

  • [45]

    M. Schmidt, J. J. Wittmann, R. Kress, H. Schmidt, J. Senker, Probing self-assembled 1,3,5-benzenetrisamides in isotactic polypropylene by 13C DQ solid-state NMR spectroscopy, Chem. Commun. 2013, 49, 267.

  • [46]

    T. Gullion, J. Schaefer, Rotational-echo double-resonance NMR. J. Magn. Reson. 2011, 213, 413.

  • [47]

    T. Gullion, Introduction to rotational-echo, double-resonance NMR. Concepts Magn. Reson. 1998, 10, 277.

  • [48]

    M. Bak, J. T. Rasmussen, N. C. Nielsen, SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 2000, 147, 296.

  • [49]

    A. L. Rohl, D. M. P. Mingos, The size and shape of molecular ions and their relevance to the packing of the hexafluorophosphate salts. J. Chem. Soc. Dalt. Trans. 1992, 3541.

  • [50]

    E. Lück, Chemical preservation of food. Zentralblatt für Bakteriol. Mikrobiol. und Hyg. 1. Abt. Orig. B, Hyg. 1985, 180, 311.

  • [51]

    R. Van Deun, J. Ramaekers, P. Nockemann, K. Van Hecke, L. Van Meervelt, K. Binnemans, Alkali-metal salts of aromatic carboxylic acids: liquid crystals without flexible chains. Eur. J. Inorg. Chem. 2005, 2005, 563.

  • [52]

    C. Butterhof, T. Martin, W. Milius, J. Breu, Microphase separation with small amphiphilic molecules: crystal structure of preservatives sodium benzoate (E 211) and potassium benzoate (E 212). Z. Anorg. Allg. Chem. 2013, 639, 2816.

  • [53]

    T. W. Martin, T. E. Gorelik, D. Greim, C. Butterhof, U. Kolb, J. Senker, J. Breu, Microphase separation upon crystallization of small amphiphilic molecules: “low” temperature form II of sodium benzoate (E 211). CrystEngComm. 2016, 18, 5811.

  • [54]

    L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602.

  • [55]

    H. J. Flammersheim, Physikalisch-chemische Untersuchungen am system Natriumbenzoat/Benzoesäure (III) Untersuchungen an der Tieftemperaturmodifikation des Komplexes 1 Natriumbenzoat · 2 Benzoesäure. Krist. Und Tech. 1974, 9, 313.

  • [56]

    H. J. Flammersheim, Physikalisch-chemische Untersuchungen am system Natriumbenzoat/Benzoesäure (I) Infrarotspektropische und röntgenografische Untersuchungen bei Raumtemperatur. Krist. Und Tech. 1974, 9, 299.

  • [57]

    H. J. Flammersheim, Physikalisch-chemische Untersuchungen am system Natriumbenzoat/Benzoesäure. J. Therm. Anal. 1975, 7, 571.

  • [58]

    A. V. Trask, W. D. S. Motherwell, W. Jones, Solvent-drop grinding: green polymorph control of cocrystallisation. Chem. Commun. 2004, 890.

  • [59]

    C. Butterhof, W. Milius, J. Breu, Co-crystallisation of benzoic acid with sodium benzoate: the significance of stoichiometry. CrystEngComm. 2012, 14, 3945.

  • [60]

    C. Butterhof, K. Bärwinkel, J. Senker, J. Breu, Polymorphism in co-crystals: a metastable form of the ionic co-crystal 2 HBz·1 NaBz crystallised by flash evaporation. CrystEngComm 2012, 14, 6744.

  • [61]

    C. Butterhof, W. Milius, J. Breu, Influence of cation size on the co-crystallisation of benzoic acid with different benzoates. Z. Anorg. Allg. Chem. 2013, 639, 308.

  • [62]

    J. M. Skinner, G. M. D. Stewart, J. C. Speakman, The crystal structure of the acid salts of some monobasic acids. Part III. Potassium hydrogen dibenzoate. J. Chem. Soc. 1954, 180.

About the article

Received: 2016-06-10

Accepted: 2016-08-02

Published Online: 2016-08-17

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1977. Export Citation

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in