Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)


The formation of CdS quantum dots and Au nanoparticles

Andreas Schiener
  • Crystallography and Structural Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
/ Ella Schmidt
  • Crystallography and Structural Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
/ Christoph Bergmann
  • Crystallography and Structural Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
/ Soenke Seifert
  • X-Ray Science Division, Argonne National Laboratory, Advanced Photon Source, 9700 S. Cass Avenue, Lemont, IL 60439, USA
/ Dirk Zahn
  • Corresponding author
  • Theoretical Chemistry and Computer-Chemistry-Center, Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
  • Email:
/ Alexander Krach
  • Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
/ Richard Weihrich
  • Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
  • Institute for Materials Resource Management, University of Augsburg, Universitätsstr. 1, 86135 Augsburg, Germany
/ Andreas Magerl
  • Biophysics Goup, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany
Published Online: 2017-01-28 | DOI: https://doi.org/10.1515/zkri-2016-1978


We report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 μs. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionic assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25°C to 45°C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment- free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed.

Keywords: Au nanoparticles; CdS quantum dots; containment-free; in-situ SAXS; nucleation and growth


  • [1]

    A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933.Google Scholar

  • [2]

    A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in semiconductor nanocrystals. Science 1992, 256, 1425.Google Scholar

  • [3]

    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538.Google Scholar

  • [4]

    P. Zhao, N. Li, D. Astruc, State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638.Google Scholar

  • [5]

    X. Chen, J. Schröder, S. Hauschild, S. Rosenfeldt, M. Dulle, S. Förster, Simultaneous SAXS/WAXS/UV–vis study of the nucleation and growth of nanoparticles: a test of classical nucleation theory. Langmuir 2015, 31, 11678.Google Scholar

  • [6]

    M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293.Google Scholar

  • [7]

    G. Beaucage, H. K. Kammler, R. Mueller, R. Strobel, N. Agashe, S. E. Pratsinis, T. Narayanan, Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nat. Mater. 2004, 3, 370.Google Scholar

  • [8]

    W. Schmidt, P. Bussian, M. Linden, H. Amenitsch, P. Agren, M. Tiemann, F. Schüth, Accessing ultrashort reaction times in particle formation with SAXS experiments: ZnS precipitation on the microsecond time scale. J. Am. Chem. Soc. 2010, 132, 6822.Google Scholar

  • [9]

    A. Schiener, T. Wlochowitz, S. Gerth, T. Unruh, A. Rempel, H. Amenitsch, A. Magerl, Nucleation and growth of CdS nanoparticles observed by ultrafast SAXS. MRS Proc. 2013, 1528, mrsf12–1528–vv10–04.Google Scholar

  • [10]

    N. S. Kozhevnikova, A. S. Vorokh, A. A. Rempel, Preparation of stable colloidal solution of cadmium sulfide CdS using ethylenediaminetetraacetic acid. Russ. J. Gen. Chem. 2010, 80, 391.Google Scholar

  • [11]

    B. Marmiroli, G. Grenci, F. Cacho-Nerin, B. Sartori, E. Ferrari, P. Laggner, L. Businarob, H. Amenitsch, Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Lab Chip 2009, 9, 2063.Google Scholar

  • [12]

    A. Schiener, A. Magerl, A. Krach, S. Seifert, H. -G. Steinrück, J. Zagorac, D. Zahnd, R. Weihrich, In situ investigation of two-step nucleation and growth of CdS nanoparticles from solution. Nanoscale 2015, 7, 11328.Google Scholar

  • [13]

    J. Ilavsky, Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 2012, 45, 324.Google Scholar

  • [14]

    J. Ilavsky, P. R. Jemian, Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009, 42, 347.Google Scholar

  • [15]

    A. Schiener, S. Seifert, A. Magerl, The stopped-drop method: a novel setup for containment-free and time-resolved measurements. J. Synchrotron Radiat. 2016, 23, 545.Google Scholar

  • [16]

    C. Engelbrekt, P. S. Jensen, K. H. Sørensen, J. Ulstrup, J. Zhang, Complexity of gold nanoparticle formation disclosed by dynamics study. J. Phys. Chem. C 2013, 117, 11818.Google Scholar

  • [17]

    T. Narayanan, High brilliance small-angle X-ray scattering applied to soft matter. Curr. Opin. Colloid Interface Sci. 2009, 14, 409.Google Scholar

  • [18]

    J. Polte, R. Erler, A. F. Thünemann, S. Sokolov, T. T. Ahner, K. Rademann, F. Emmerling, R. Kraehnert, Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 2010, 4, 1076.Google Scholar

  • [19]

    L. Ratke, P. W. Voorhees, Growth and Coarsening, Springer, Berlin, Heidelberg, 2002.Google Scholar

  • [20]

    D. R. Lide, H. V. Kehiaian, “CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, ISBN 9780849301971.Google Scholar

  • [21]

    J. H. Wang, Self-diffusion and structure of liquid water. I. Measurement of self-diffusion of liquid water with deuterium as tracer. J. Am. Chem. Soc. 1951, 73, 510.Google Scholar

  • [22]

    J. H. Wang, Self-diffusion and structure of liquid water. II. Measurement of self-diffusion of liquid water with O 18 as tracer. J. Am. Chem. Soc. 1951, 73, 4181.Google Scholar

  • [23]

    J. H. Wang, C. V. Robinson, I. S. Edelman, Self-diffusion and Structure of Liquid Water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as Tracers1. J. Am. Chem. Soc. 1953, 75, 466.Google Scholar

  • [24]

    T. J. Woehl, J. E. Evans, I. Arslan, W. D. Ristenpart, N. D. Browning, Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 2012, 6, 8599.Google Scholar

  • [25]

    A. Abedini, A. Daud, M. Abdul Hamid, N. Kamil Othman, E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 2013, 8, 474.Google Scholar

  • [26]

    J. Anwar, D. Zahn, Uncovering molecular processes in crystal nucleation using molecular simulation. Angew. Chem., Int. Ed. 2011, 50, 1996.Google Scholar

  • [27]

    A. Kawska, P. Duchstein, O. Hochrein, D. Zahn, Atomistic mechanism of zno nucleation from ethanolic solution: ion association, proton transfer and selforganization, Nanoletters 2008, 8, 2336.Google Scholar

  • [28]

    T. Milek, P. Duchstein, G. Seifert, D. Zahn, Motif reconstruction in clusters and layers: benchmarks for the kawska-zahn approach to model crystal formation. Chem. Phys. Chem. 2010, 11, 847.Google Scholar

  • [29]

    T. Milek, D. Zahn, Molecular simulation of Ag nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure. Nanoletters 2014, 14, 4913.Google Scholar

About the article

Received: 2016-05-27

Accepted: 2016-07-20

Published Online: 2017-01-28

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1978.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in