Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

Imago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198

See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)


Experimental and theoretical investigation of the chromium–vanadium–antimony system

Matthias Regus
  • Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
/ Svitlana Polesya
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
/ Gerhard Kuhn
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
/ Sergiy Mankovsky
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
/ Sage R. Bauers
  • Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
/ David C. Johnson
  • Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
/ Hubert Ebert
  • Corresponding author
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Email:
/ Wolfgang Bensch
  • Corresponding author
  • Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
  • Email:
Published Online: 2016-12-15 | DOI: https://doi.org/10.1515/zkri-2016-1979


The binary compound V3Sb (V2.64Sb, V3Sb and V3.24Sb) was synthesized as thin multilayered films with varying V:Sb ratios. The V-content determines the crystallization temperature and it is highest for the film with the lowest amount of V. Ternary chromium–vanadium–antimony (Cr–V–Sb) films were prepared containing Cr from 10 to 51 at-% with the Sb content fixed to yield M3Sb (M=Cr, V). In the as-deposited state the layers are already interdiffused which is most likely caused by the very low repeating unit thickness between 0.29 and 0.68 nm investigated by X-ray diffraction experiments. All ternary compounds crystallized from the amorphous state with crystallization temperatures depending more on the repeating unit thickness than on chemical composition. For most samples the simultaneous crystallization of the two phases M3Sb (A15 structure type) and MSb is observed. The crystalline A15 compounds are only stable in a limited temperature range and decompose at elevated temperatures. Compared to the binary Cr–Sb system crystallization of the hexagonal phase MSb (M=Cr, V) occurs at remarkably higher temperatures, i.e. in the ternary system nucleation and crystallization of this phase is hindered. The chemical composition requires short-range composition fluctuations to nucleate the binary phase. The first principles total energy calculations using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) method confirm the experimental observations concerning the concentration-dependent stability of different phases of the Cr–V–Sb system. For the ratio M:Sb=3:1 the system is preferably stabilized in the A15 crystal structure for all possible Cr and V concentrations, while an increase of Sb content up to M:Sb=2:1 results in the stabilization of the Ni2In structure for almost all Cr concentrations. Only in the V-rich regime of the system the Heusler Ni2MnAl-type structure was found to be energetically more preferable.

This article offers supplementary material which is provided at the end of the article.

Keywords: A15 type structure; antimonides; phase stability; theory; thin film synthesis


  • [1]

    Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloys Compds. 2001, 315, 193.

  • [2]

    T. Caillat, A. Borshchevsky, J.-P. Fleurial, Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 1996, 80, 4442.

  • [3]

    T. Caillat, J.-P. Fleurial, A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 1997, 58, 1119.

  • [4]

    A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, F. Steglich, Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. EPL (Europhysics Letters), 2007, 80, 17008.

  • [5]

    A. Kjekshus, K. P. Walseth, On the properties of the Cr(1+x)Sb, Fe(1+x)Sb, Co(1+x)Sb, Ni(1+x)Sb, Pd(1+x)Sb and Pt(1+x)Sb phases. Acta. Chem. Scand. 1969, 23, 2621.

  • [6]

    H. Holseth, A. Kjekshus, Compounds with the marcasite type crystal structure. I. Compositions of the binary pnictides. Acta. Chem. Scand. 1968, 22, 3273.

  • [7]

    T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, editors. Binary Alloy Phase Diagrams, 2nd Edition. ASM International, ASM World Headquarters 9639 Kinsman Road Materials Park, OH 44073-0002, 1990.

  • [8]

    M. Armbrüster, W. Schnelle, U. Schwarz, Y. Grin, Chemical bonding in TiSb2 and VSb2: a quantum chemical and experimental study. Inorg. Chem. 2007, 46, 6319.

  • [9]

    S. Derakhshan, A. Assoud, K. M. Kleinke, E. Dashjav, X. Qiu, Simon J. L. Billinge, H. Kleinke, Planar nets of Ti atoms comprising squares and rhombs in the new binary antimonide Ti2Sb. J. Am. Chem. Soc. 2004, 126, 8295.

  • [10]

    R. Berger, Structure refinement of Ti5Sb3 from single-crystal data. Acta. Chem. Scand. 1977, A31, 889.

  • [11]

    A. Kjekshus, F. Grønvold, J. Thorbjørnsen, On the phase relationships in the titanium-antimony system. The crystal structure of Ti3Sb. Acta. Chem. Scand. 1962, 16, 1493.

  • [12]

    M. B. Alemayehu, M. Falmbigl, K. Ta, J. Ditto, D. L. Medlin, D. C. Johnson, Designed synthesis of van der waals heterostructures: the power of kinetic control. Angew. Chem. 2015, 127, 15688.

  • [13]

    N. S. Gunning, J. Feser, M. Beekman, D. G. Cahill, D. C. Johnson, Synthesis and thermal properties of solid-state structural isomers: ordered intergrowths of SnSe and MoSe2. J. Am. Chem. Soc. 2015, 137, 8803.

  • [14]

    S. R. Bauers, D. R. Merrill, D. B. Moore, D. C. Johnson, Carrier dilution in TiSe2 based intergrowth compounds for enhanced thermoelectric performance. J. Mater. Chem. C 2015, 3, 10451.

  • [15]

    M. Noh, C. D. Johnson, M. D. Hornbostel, J. Thiel, D. C. Johnson, Control of reaction pathway and the nanostructure of final products through the design of modulated elemental reactants. Chem. Mater. 1996, 8, 1625.

  • [16]

    D. C. Johnson, Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opn. Solid State Mater. Sci. 1996, 3, 159.

  • [17]

    F. R. Harris, S. Standridge, C. Feik, D. C. Johnson, Design and synthesis of [(Bi2Te3)x(TiTe2)y] superlattices. Angew. Chem. Int. Ed. 2003, 42, 5296.

  • [18]

    R. Atkins, J. Wilson, P. Zschack, C. Grosse, W. Neumann, D. C. Johnson, Synthesis of [(SnSe)1.15]m(TaSe2)n ferecrystals: structurally tunable metallic compounds. Chem. Mater. 2012, 24, 4594.

  • [19]

    C. L. Heideman, S. Tepfer, Q. Lin, R. Rostek, P. Zschack, M. D. Anderson, I. M. Anderson, D. C. Johnson, Designed synthesis, structure and properties of a family of ferecrystalline compounds [(PbSe)1.00]m(MoSe2)n. J. Am. Chem. Soc. 2013, 135, 11055.

  • [20]

    D. B. Moore, M. Beekman, S. Disch, P. Zschack, I. Häusler, W. Neumann, D. C. Johnson, Synthesis, structure and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 2013, 25, 2404.

  • [21]

    A. L. E. Smalley, M. L. Jespersen, D. C. Johnson, Synthesis and structural evolution of RuSb3, a new metastable skutterudite compound. Inorg. Chem. 2004, 43, 2486.

  • [22]

    J. R. Williams, D. C. Johnson, Synthesis of the new metastable skutterudite compound NiSb3 from modulated elemental reactants. Inorg. Chem. 2002, 41, 4127.

  • [23]

    R. Schneidmiller, M. D. Hornbostel, D. C. Johnson, Kinetics of formation of molybdenum selenides from modulated reactants and structure of the new compound Mo3Se. Inorg. Chem. 1997, 36, 5894.

  • [24]

    S. Kraschinski, S. Herzog, W. Bensch, Low temperature synthesis of chromium tellurides using superlattice reactants: crystallisation of layered CrTe3 at 100oC and the decomposition into Cr2Te3. Solid State Sci. 2002, 4, 1237.

  • [25]

    S. Herzog, S. Kraschinski, W. Bensch, The reactivity of Cr-Te superlattice reactants and of co-deposited Cr-Te films: studies with in-situ X-ray diffractometry. Z. Anorg. Allg. Chem. 2003, 629, 1825.

  • [26]

    M. Behrens, R. Kiebach, W. Bensch, D. Häussler, W. Jäger, Synthesis of thin Cr3Se4 films from modulated elemental reactants via two amorphous intermediates: a detailed examination of the reaction mechanism. Inorg. Chem. 2006, 45, 2704.

  • [27]

    D. R. Merrill, D. B. Moore, S. R. Bauers, M. Falmbigl, D. C. Johnson, Misfit layer compounds and ferecrystals: model systems for thermoelectric nanocomposites. Materials 2015, 8, 2000.

  • [28]

    R. D. Westover, J. Ditto, M. Falmbigl, Z. L. Hay, D. C. Johnson, Synthesis and characterization of quaternary monolayer thick MoSe2/SnSe/NbSe2/SnSe heterojunction superlattices. Chem. Mater. 2015, 27, 6411.

  • [29]

    M. Fukuto, M. D. Hornbostel, D. C. Johnson, Use of superlattice structure to control reaction mechanism: kinetics and energetics of Nb5Se4 formation. J. Am. Chem. Soc. 1994, 116, 9136.

  • [30]

    M. Overbay, T. Novet, D. C. Johnson, The low temperature synthesis of vanadium selenides using superlattice reactants. J. Solid State Chem. 1996, 123, 337.

  • [31]

    M. D. Hornbostel, E. J. Hyer, J. Thiel, D. C. Johnson, Rational synthesis of metastable skutterudite compounds using multilayer precursors. J. Am. Chem. Soc. 1997, 119, 2665.

  • [32]

    O. Oyelaran, T. Novet, C. D. Johnson, D. C. Johnson, Controlling solid-state reaction pathways: composition dependence in the nucleation energy of InSe. J. Am. Chem. Soc. 1996, 118, 2422.

  • [33]

    M. Noh, D. C. Johnson, Designed synthesis of solid state structural isomers from modulated reactants. J. Am. Chem. Soc. 1996, 118, 9117.

  • [34]

    M. D. Hornbostel, E. J. Hyer, J. H. Edvalson, D. C. Johnson, Systematic study of new rare earth element-iron-antimony skutterudites synthesized using multilayer precursors. Inorg. Chem. 1997, 36, 4270.

  • [35]

    C. D. Johnson, K. Anderson, A. D. Gromko, D. C. Johnson, Variation of the nucleation energy of molybdenum silicides as a function of the composition of an amorphous precursor. J. Am. Chem. Soc. 1998, 120, 5226.

  • [36]

    J. R. Williams, M. Johnson, D. C. Johnson, Composition dependence of the nucleation energy of iron antimonides from modulated elemental reactants. J. Am. Chem. Soc. 2001, 123, 1645.

  • [37]

    J. R. Williams, A. L. E. Smalley, H. Sellinschegg, C. Daniels-Hafer, J. Harris, M. B. Johnson, D. C. Johnson, Synthesis of crystalline skutterudite superlattices using the modulated elemental reactant method. J. Am. Chem. Soc. 2003, 125, 10335.

  • [38]

    Q. Lin, C. L. Heideman, N. Nguyen, P. Zschack, C. Chiritescu, D. G. Cahill, D. C. Johnson, Designed synthesis of families of misfit-layered compounds. Eur. J. Inorg. Chem. 2008, 2008, 2382.

  • [39]

    C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 2007, 315, 351.

  • [40]

    T. Novet, D. C. Johnson, New synthetic approach to extended solids: selective synthesis of iron silicides via the amorphous state. J. Am. Chem. Soc. 1991, 113, 3398.

  • [41]

    L. Fister, D. C. Johnson, Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc. 1992, 114, 4639.

  • [42]

    C. A. Grant and D. C. Johnson, Investigation of phase formation sequence in the iron-aluminum phase diagram using superlattice composites as reactants. Chem. Mater. 1994, 6, 1067.

  • [43]

    N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 2011, 50, 2014.

  • [44]

    S. R. Bauers, S. R. Wood, K. M. Ø. Jensen, A. B. Anders B. Blichfeld, B. B. Iversen, S. J. L. Billinge, D. C. Johnson, Structural evolution of iron antimonides from amorphous precursors to crystalline products studied by total scattering techniques. J. Am. Chem. Soc. 2015, 137, 9652.

  • [45]

    M. Regus, G. Kuhn, S. Mankovsky, H. Ebert, W. Bensch, Investigations of the crystallization mechanism of CrSb and CrSb2 multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry. J. Solid State Chem. 2012, 196, 100.

  • [46]

    M. Regus, S. Mankovsky, S. Polesya, G. Kuhn, J. Ditto, U. Schürmann, A. Jacquot, K. Bartholomé, C. Näther, M. Winkler, J. D. König, H. Böttner, L. Kienle, D. C. Johnson, H. Ebert, W. Bensch, Characterization of Cr-rich Cr-Sb multilayer films: syntheses of a new metastable phase using modulated elemental reactants. J. Solid State Chem. 2015, 230, 254.

  • [47]

    V. M. Ryzhkovskii, V. S. Goncharov, Effect of high-pressure high-temperature processing on the phase composition and magnetic state of Mn1+xSb (0 x 1.0) alloys. Inorg. Chem. 2010, 46, 226.

  • [48]

    M. Regus, G. Kuhn, S. Polesya, S. Mankovsky, M. Alemayehu, M. Stolt, D. C. Johnson, H. Ebert, W. Bensch, Experimental and theoretical investigation of the new, metastable compound Cr3Sb. Z. Krist. – Cryst. Mater. 2014, 229, 505.

  • [49]

    S. E. Rasmussen, R. G. Hazell, Preparation of single phases and single crystals in the vanadium-gallium-antimony system. Crystal structure of V6GaSb. Acta. Chem. Scand. 1978, A32, 785.

  • [50]

    L. Fister, X.-M. Li, J. McConnell, T. Novet, D. C. Johnson, Deposition system for the synthesis of modulated, ultrathin-film composites. J. Vac. Sci. Technol. A 1993, 11, 3014.

  • [51]

    H. Ebert, The Munich SPR-KKR, version 6.3, 2012. http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR.

  • [52]

    H. Ebert, D. Ködderitzsch, J. Minár, Calculating condensed matter properties using the KKR-Green’s function method – recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501.

  • [53]

    S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58, 1200.

  • [54]

    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54, 11169.

  • [55]

    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15.

  • [56]

    M. Ghosh, A. Barman, A. Das, A. K. Meikap, S. K. De, S. Chatterjee, Resistivity and magnetoresistance studies of Nb3Ir and V3Sb compounds. Phys. Stat. solidi B 1997, 201, 153.

  • [57]

    M. Venkatraman, J. P. Neumann, The Cr-Sb (Chromium-Antimony) system. Bull. Alloy Phase Diagr. 1990, 11, 435.

  • [58]

    A. I. Snow, Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys. 1953, 25, 127.

About the article

Received: 2016-06-09

Accepted: 2016-10-13

Published Online: 2016-12-15

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1979. Export Citation

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in