Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

Imago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198

Online
ISSN
2196-7105
See all formats and pricing
In This Section
Volume 232, Issue 1-3 (Feb 2017)

Issues

Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates

Martin Albat
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany
/ Andrew Kentaro Inge
  • Department of Materials and Environmental Chemistry (MMK), Stockholm University, SE 106 91 Stockholm, Sweden
/ Norbert Stock
  • Corresponding author
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany
  • Email:
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/zkri-2016-1980

Abstract

Three new bismuth arylsulfonatocarboxylates [Bi(OH)(SB)] (1), [Bi4(ST)2(HST)O2(H2O)2]·H2O (2) and [Bi4(ST)2O3(H2O)2] (3) were synthesized under solvothermal reaction conditions at 180°C using the potassium or sodium salt of 4-sulfobenzoic acid (H2SB) and 2-sulfoterephthalic acid (H3ST), respectively. The compounds were characterized in detail and the crystal structures were determined from single crystal X-ray diffraction data. Phase purity was confirmed by powder X-ray diffraction and elemental analysis. Structural comparisons to the only three other known bismuth sulfonatocarboxylates are presented. Due to the higher reaction temperatures employed for the synthesis of the title compounds a higher degree of condensation of the BiOx polyhedra (X=7 or 8) to tetrameric units, 1D chains or a 2D layer is observed. Connection through the organic linker molecules leads to the formation of 3D coordination polymers in all three title compounds.

This article offers supplementary material which is provided at the end of the article.

Keywords: bismuth; coordination polymer; sulfonatocarboxylates

References

  • [1]

    X. Zhang, S. Yin, R. Qiu, J. Xia, W. Dai, Z. Yu, Synthesis and structure of an air-stable hypervalent organobismuth (III) perluoreooctanesulfonate and its use as high-efficency catalyst for Mannich-type reactions in water. J. Organ. Chem. 2009, 694, 3559.

  • [2]

    S. Mazières, C. Le Roux, M. Peyronneau, H. Gornitzka, N. Ropues, Structural characterization of bismuth(III) and antimony(III) chlorotriflates: key intermediates in catalytic Friedel-Crafts transformations. Eur. J. Inorg. Chem. 2004, 14, 2823.

  • [3]

    M. Schlesinger, L. Miersch, T. Rüffler, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters. Main Group Met. Chem. 2013, 36, 11.

  • [4]

    P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Remarkable in vitro bactericidal activity of bismuth (III) sulfonates against Helicobacter pylori. Dalton Trans. 2012, 41, 11798.

  • [5]

    P. C. Andrews, G. B. Deacon, R. L. Ferrero, P. C. Junk, A. Karrar, I. Kumar, J. G. MacLellan, Bismuth(III) 5-sulfosalicylate complexes: structures, solubility and activity against Helicopacter pylori. Dalton Trans. 2009, 32, 6377.

  • [6]

    M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Synthesis and characterisation of Bismuth(III) aminoarenesulfonate complexes and their powerfull bactericidal activity against Helicobacter pylori. Chem. Eur. J. 2013, 19, 5264.

  • [7]

    P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. MacLellan, Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori. Dalton Trans. 2010, 39, 9633.

  • [8]

    Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, Review: Bismuth complexes: synthesis and applications in biomedicine. J. Coord. Chem. 2015, 3, 379.

  • [9]

    V. Stavila, R. L. Davidovich, A. Gulea, K. H. Whitm, Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure. Coord. Chem. Rev. 2006, 250, 2782.

  • [10]

    A. K. Inge, M. Köppen, J. Su, M. Feyand, H. Xu, X. Zou, M. O’Keeffe, N. Stock, Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J. Am. Chem. Soc. 2016, 138, 1970.

  • [11]

    M. Feyand, M. Köppen, G. Friedrichs, N. Stock, Bismuth tri- and tetraarylcarboxylates: crystal structures, in situ X-ray diffraction, intermediates and luminescence. Eur. J.2013, 37, 12537.

  • [12]

    M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth–metal–organic framework. Angew. Chem. 2012, 124, 10519.

  • [13]

    M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett, M. Schröder, A novel bismuth-based metal–organic framework for high volumetric methane and carbon dioxide adsorption. Chem. Eur. J. 2014, 268024.

  • [14]

    S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald, M. J. Ferguson, Bipyridine complexes of E3+ (E=P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations. Chem. Sci. 2015, 6, 6545.

  • [15]

    M. Goswami, A. Ellern, N. L. B. Pohl, Bismuth(V)-mediated thioglycosid actication. Angew. Chem. 2013, 125, 8599.

  • [16]

    R. Rüther, F. Huber, H. Preut, Triorganoantimon- und triorganobismutdisulfonate kristall- und molekülstrukturen von (C6H5)3M(O3SC6H5)2 (M=Sb, Bi). Z. Anorg. Allg. Chem. 1986, 539, 110.

  • [17]

    M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)·DMSO·2H2O. Main Group Met. Chem. 2012, 35, 135.

  • [18]

    S. S. Chitnis, N. Burford, A. Decken, M. J. Ferguson, Coordination complexes of bismuth triflates with tetrahydrofuran and diphosphine ligands. Inorg. Chem. 2013, 52, 7242.

  • [19]

    K. Lyczko, M. Lyczko, K. Wozniak, M. Stachowicz, W. P. Oziminski, K. Kubo, Influence of pH and type of counterion on the formation of bismuth(III) complexes with tropolonato and 5-methyltropolonato ligands: Synthesis, structure, spectroscopic characterization and calculation studies. Inorganica Chimica Acta 2015, 436, 57.

  • [20]

    A. M. Johnson, M. C. Young, R. J. Hooley, Reversible multicomponent self-assembly mediated by bismuth ions. Dalton Trans. 2013, 42, 8394.

  • [21]

    L. Dostál, P. Novák, R. Jambor, A. Ruzicka, I. Cisarova, R. Jirasko, J. Holecek, Synthesis and structural study of organoantimony(III) and organobismuth(III) triflates and cations containing O,C,O-pincer type ligands. Organometallics 2007, 26, 2911.

  • [22]

    A. P. M. Robertson, N. Burford, R. McDonald, M. J. Ferguson, Coordination complexes of Ph3Sb2+ and Ph3Bi2+ : beyond pnictonium cations. Angew. Chem. 2014, 126, 3548.

  • [23]

    A. Fridrichová, T. Svoboda, R. Jambor, Z. Padelkova, A. Ruzicka, M. Erben, R. Jirasko, L. Dostal, Synthesis and structural study on oranoantimony(III) and organobismuth(III) hydroxides containing an NCN pincer type ligand. Organometallics 2009, 28, 5522.

  • [24]

    A. Aprile, R. Corbo, K. V. Tan, D. J. D. Wilson, J. L. Dutton, The first bismuth-NHC complexes. Dalton Trans. 2014, 43, 764.

  • [25]

    P. Suresh, A. Sathyanarayana, G. Prabusankar, O. Hernandez, S. Golhen, The first monomeric β-diketiminate stabilized four-coordinated bismuth(III) bistrifluoromethansulfonate. Z. Anorg. Allg. Chem. 2012, 3–4, 617.

  • [26]

    J. Beckmann, J. Bolsinger, A. Duthie, P. Finke, E. Lork, C. Lüdtke, O. Mallow, S. Mebs, Mesityltellurenyl cations stabilized by triphenylpnictogens [MesTe(EPh3)]+ (E=P, As, Sb). Inorg. Chem. 2012, 51, 12395.

  • [27]

    J. W. Bats, M. Rueping, Experimental Crystal Structure Determination. CSD Communication 2015.

  • [28]

    L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem. 2010, 30, 4763.

  • [29]

    D. L. Rogow, H. Fei, D. P. Brennan, M. Ikehata, P. Y. Zavalij, A. G. Oliver, S. R. J. Oliver, Hydrothermal synthesis of two cationic bismuthate clusters: An alkylenedisufonate bridged hexamer, [Bi6O4(OH)4(H2O)2][(CH2)2(SO3)2]3 and a rare nonamer templated by triflate, [Bi9O8(OH)6][CF3SO3]5. Inorg. Chem. 2010, 49, 5619.

  • [30]

    P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun. 2012, 48, 7583.

  • [31]

    L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffler, H. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J. 2011, 17, 6985.

  • [32]

    L. Miersch, T. Rüffler, D. Schaarschmidt, H. Lang, R. W. Troff, C. A. Schalley, M. Mehring, Synthesis and characterization of polynuclear oxidobismuth sulfonates. Eur. J. Inorg. Chem. 2013, 9, 1427.

  • [33]

    V. V. Sharutin, O. K. Sharutina, I. I. Pavlushkina, I. V. Egorova, A. P. Pakusina, D. B. Krivolapov, A. T. Gubaidullin, I. A. Litvinov, Reaction of Triphenylbismuth Bis(arenesulfonates) with Triphenylstibine. Zh. Obshch. Khim. 2001, 71, 87.

  • [34]

    V. V. Sharutin, O. K. Sharutina, M. V. Zhitkevich, N. V. Nasonova, T. N. Bliznyuk, V. K. Bel’skii, Diphenylbismuth arenesulfonates. Synthesis and structure. Zh. Obshch. Khim. 2000, 70, 87.

  • [35]

    F. Gschwind, M. Jansen, An unusual bismuth ethanedisulfonate network. Crystals 2012, 2, 1374.

  • [36]

    S. Bauer, N. Stock, Schneller zum Ziel: Hochdurchsatz-Methoden in der Festkörperchemie. Chem. Unserer Zeit. 2007, 41, 390.

  • [37]

    N. Stock, High-throughput methods for discovery and optimization of porous crystalline materials. Chem. Ing. Tech. 2010, 82, 1039.

  • [38]

    N. Stock, High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mat. 2010, 129, 287.

  • [39]

    G. M. Sheldrick, Crystal structure refinement with SHELX. Acta Cryst. 2015, 71, 3.

  • [40]

    Stoe; Cie: XShape and XRed., Darmstadt, Germany 1998.

  • [41]

    G. M. Sheldrick, SADABS. University of Göttingen, Germany 1996.

  • [42]

    R. A. Coxall, S. G. Harris, S. Henderson, S. Parsons, R. A. Taskar, R. E. P. Winpenny, Inter-ligand reactions: in situ formation of new polydentate ligands. J. Chem. Soc. Dalton Trans. 2000, 14, 2349.

  • [43]

    P. M. Forster, N. Stock, A. K. Cheetham, A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic-organic materials. Angew. Chem. Int. Ed. 2005, 44, 7608.

About the article

Received: 2016-06-10

Accepted: 2016-11-20

Published Online: 2017-01-20

Published in Print: 2017-02-01



Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1980. Export Citation

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in