Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 232, Issue 1-3


Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates

Martin Albat
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew Kentaro Inge
  • Department of Materials and Environmental Chemistry (MMK), Stockholm University, SE 106 91 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Norbert Stock
  • Corresponding author
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/zkri-2016-1980


Three new bismuth arylsulfonatocarboxylates [Bi(OH)(SB)] (1), [Bi4(ST)2(HST)O2(H2O)2]·H2O (2) and [Bi4(ST)2O3(H2O)2] (3) were synthesized under solvothermal reaction conditions at 180°C using the potassium or sodium salt of 4-sulfobenzoic acid (H2SB) and 2-sulfoterephthalic acid (H3ST), respectively. The compounds were characterized in detail and the crystal structures were determined from single crystal X-ray diffraction data. Phase purity was confirmed by powder X-ray diffraction and elemental analysis. Structural comparisons to the only three other known bismuth sulfonatocarboxylates are presented. Due to the higher reaction temperatures employed for the synthesis of the title compounds a higher degree of condensation of the BiOx polyhedra (X=7 or 8) to tetrameric units, 1D chains or a 2D layer is observed. Connection through the organic linker molecules leads to the formation of 3D coordination polymers in all three title compounds.

This article offers supplementary material which is provided at the end of the article.

Keywords: bismuth; coordination polymer; sulfonatocarboxylates


  • [1]

    X. Zhang, S. Yin, R. Qiu, J. Xia, W. Dai, Z. Yu, Synthesis and structure of an air-stable hypervalent organobismuth (III) perluoreooctanesulfonate and its use as high-efficency catalyst for Mannich-type reactions in water. J. Organ. Chem. 2009, 694, 3559.CrossrefGoogle Scholar

  • [2]

    S. Mazières, C. Le Roux, M. Peyronneau, H. Gornitzka, N. Ropues, Structural characterization of bismuth(III) and antimony(III) chlorotriflates: key intermediates in catalytic Friedel-Crafts transformations. Eur. J. Inorg. Chem. 2004, 14, 2823.Google Scholar

  • [3]

    M. Schlesinger, L. Miersch, T. Rüffler, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters. Main Group Met. Chem. 2013, 36, 11.Google Scholar

  • [4]

    P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Remarkable in vitro bactericidal activity of bismuth (III) sulfonates against Helicobacter pylori. Dalton Trans. 2012, 41, 11798.CrossrefGoogle Scholar

  • [5]

    P. C. Andrews, G. B. Deacon, R. L. Ferrero, P. C. Junk, A. Karrar, I. Kumar, J. G. MacLellan, Bismuth(III) 5-sulfosalicylate complexes: structures, solubility and activity against Helicopacter pylori. Dalton Trans. 2009, 32, 6377.Google Scholar

  • [6]

    M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Synthesis and characterisation of Bismuth(III) aminoarenesulfonate complexes and their powerfull bactericidal activity against Helicobacter pylori. Chem. Eur. J. 2013, 19, 5264.CrossrefGoogle Scholar

  • [7]

    P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. MacLellan, Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori. Dalton Trans. 2010, 39, 9633.CrossrefGoogle Scholar

  • [8]

    Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, Review: Bismuth complexes: synthesis and applications in biomedicine. J. Coord. Chem. 2015, 3, 379.Google Scholar

  • [9]

    V. Stavila, R. L. Davidovich, A. Gulea, K. H. Whitm, Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure. Coord. Chem. Rev. 2006, 250, 2782.CrossrefGoogle Scholar

  • [10]

    A. K. Inge, M. Köppen, J. Su, M. Feyand, H. Xu, X. Zou, M. O’Keeffe, N. Stock, Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J. Am. Chem. Soc. 2016, 138, 1970.CrossrefGoogle Scholar

  • [11]

    M. Feyand, M. Köppen, G. Friedrichs, N. Stock, Bismuth tri- and tetraarylcarboxylates: crystal structures, in situ X-ray diffraction, intermediates and luminescence. Eur. J.2013, 37, 12537.Google Scholar

  • [12]

    M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth–metal–organic framework. Angew. Chem. 2012, 124, 10519.CrossrefGoogle Scholar

  • [13]

    M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett, M. Schröder, A novel bismuth-based metal–organic framework for high volumetric methane and carbon dioxide adsorption. Chem. Eur. J. 2014, 268024.Google Scholar

  • [14]

    S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald, M. J. Ferguson, Bipyridine complexes of E3+ (E=P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations. Chem. Sci. 2015, 6, 6545.CrossrefGoogle Scholar

  • [15]

    M. Goswami, A. Ellern, N. L. B. Pohl, Bismuth(V)-mediated thioglycosid actication. Angew. Chem. 2013, 125, 8599.CrossrefGoogle Scholar

  • [16]

    R. Rüther, F. Huber, H. Preut, Triorganoantimon- und triorganobismutdisulfonate kristall- und molekülstrukturen von (C6H5)3M(O3SC6H5)2 (M=Sb, Bi). Z. Anorg. Allg. Chem. 1986, 539, 110.CrossrefGoogle Scholar

  • [17]

    M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)·DMSO·2H2O. Main Group Met. Chem. 2012, 35, 135.Google Scholar

  • [18]

    S. S. Chitnis, N. Burford, A. Decken, M. J. Ferguson, Coordination complexes of bismuth triflates with tetrahydrofuran and diphosphine ligands. Inorg. Chem. 2013, 52, 7242.CrossrefGoogle Scholar

  • [19]

    K. Lyczko, M. Lyczko, K. Wozniak, M. Stachowicz, W. P. Oziminski, K. Kubo, Influence of pH and type of counterion on the formation of bismuth(III) complexes with tropolonato and 5-methyltropolonato ligands: Synthesis, structure, spectroscopic characterization and calculation studies. Inorganica Chimica Acta 2015, 436, 57.CrossrefGoogle Scholar

  • [20]

    A. M. Johnson, M. C. Young, R. J. Hooley, Reversible multicomponent self-assembly mediated by bismuth ions. Dalton Trans. 2013, 42, 8394.CrossrefGoogle Scholar

  • [21]

    L. Dostál, P. Novák, R. Jambor, A. Ruzicka, I. Cisarova, R. Jirasko, J. Holecek, Synthesis and structural study of organoantimony(III) and organobismuth(III) triflates and cations containing O,C,O-pincer type ligands. Organometallics 2007, 26, 2911.CrossrefGoogle Scholar

  • [22]

    A. P. M. Robertson, N. Burford, R. McDonald, M. J. Ferguson, Coordination complexes of Ph3Sb2+ and Ph3Bi2+ : beyond pnictonium cations. Angew. Chem. 2014, 126, 3548.CrossrefGoogle Scholar

  • [23]

    A. Fridrichová, T. Svoboda, R. Jambor, Z. Padelkova, A. Ruzicka, M. Erben, R. Jirasko, L. Dostal, Synthesis and structural study on oranoantimony(III) and organobismuth(III) hydroxides containing an NCN pincer type ligand. Organometallics 2009, 28, 5522.CrossrefGoogle Scholar

  • [24]

    A. Aprile, R. Corbo, K. V. Tan, D. J. D. Wilson, J. L. Dutton, The first bismuth-NHC complexes. Dalton Trans. 2014, 43, 764.CrossrefGoogle Scholar

  • [25]

    P. Suresh, A. Sathyanarayana, G. Prabusankar, O. Hernandez, S. Golhen, The first monomeric β-diketiminate stabilized four-coordinated bismuth(III) bistrifluoromethansulfonate. Z. Anorg. Allg. Chem. 2012, 3–4, 617.Google Scholar

  • [26]

    J. Beckmann, J. Bolsinger, A. Duthie, P. Finke, E. Lork, C. Lüdtke, O. Mallow, S. Mebs, Mesityltellurenyl cations stabilized by triphenylpnictogens [MesTe(EPh3)]+ (E=P, As, Sb). Inorg. Chem. 2012, 51, 12395.CrossrefGoogle Scholar

  • [27]

    J. W. Bats, M. Rueping, Experimental Crystal Structure Determination. CSD Communication 2015.Google Scholar

  • [28]

    L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem. 2010, 30, 4763.Google Scholar

  • [29]

    D. L. Rogow, H. Fei, D. P. Brennan, M. Ikehata, P. Y. Zavalij, A. G. Oliver, S. R. J. Oliver, Hydrothermal synthesis of two cationic bismuthate clusters: An alkylenedisufonate bridged hexamer, [Bi6O4(OH)4(H2O)2][(CH2)2(SO3)2]3 and a rare nonamer templated by triflate, [Bi9O8(OH)6][CF3SO3]5. Inorg. Chem. 2010, 49, 5619.CrossrefGoogle Scholar

  • [30]

    P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun. 2012, 48, 7583.CrossrefGoogle Scholar

  • [31]

    L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffler, H. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J. 2011, 17, 6985.CrossrefGoogle Scholar

  • [32]

    L. Miersch, T. Rüffler, D. Schaarschmidt, H. Lang, R. W. Troff, C. A. Schalley, M. Mehring, Synthesis and characterization of polynuclear oxidobismuth sulfonates. Eur. J. Inorg. Chem. 2013, 9, 1427.Google Scholar

  • [33]

    V. V. Sharutin, O. K. Sharutina, I. I. Pavlushkina, I. V. Egorova, A. P. Pakusina, D. B. Krivolapov, A. T. Gubaidullin, I. A. Litvinov, Reaction of Triphenylbismuth Bis(arenesulfonates) with Triphenylstibine. Zh. Obshch. Khim. 2001, 71, 87.Google Scholar

  • [34]

    V. V. Sharutin, O. K. Sharutina, M. V. Zhitkevich, N. V. Nasonova, T. N. Bliznyuk, V. K. Bel’skii, Diphenylbismuth arenesulfonates. Synthesis and structure. Zh. Obshch. Khim. 2000, 70, 87.Google Scholar

  • [35]

    F. Gschwind, M. Jansen, An unusual bismuth ethanedisulfonate network. Crystals 2012, 2, 1374.CrossrefGoogle Scholar

  • [36]

    S. Bauer, N. Stock, Schneller zum Ziel: Hochdurchsatz-Methoden in der Festkörperchemie. Chem. Unserer Zeit. 2007, 41, 390.CrossrefGoogle Scholar

  • [37]

    N. Stock, High-throughput methods for discovery and optimization of porous crystalline materials. Chem. Ing. Tech. 2010, 82, 1039.Google Scholar

  • [38]

    N. Stock, High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mat. 2010, 129, 287.CrossrefGoogle Scholar

  • [39]

    G. M. Sheldrick, Crystal structure refinement with SHELX. Acta Cryst. 2015, 71, 3.Google Scholar

  • [40]

    Stoe; Cie: XShape and XRed., Darmstadt, Germany 1998.Google Scholar

  • [41]

    G. M. Sheldrick, SADABS. University of Göttingen, Germany 1996.Google Scholar

  • [42]

    R. A. Coxall, S. G. Harris, S. Henderson, S. Parsons, R. A. Taskar, R. E. P. Winpenny, Inter-ligand reactions: in situ formation of new polydentate ligands. J. Chem. Soc. Dalton Trans. 2000, 14, 2349.Google Scholar

  • [43]

    P. M. Forster, N. Stock, A. K. Cheetham, A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic-organic materials. Angew. Chem. Int. Ed. 2005, 44, 7608.CrossrefGoogle Scholar

About the article

Received: 2016-06-10

Accepted: 2016-11-20

Published Online: 2017-01-20

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 245–253, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1980.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in