Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3


Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications

Ralph A. Henning
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Leichtweiss
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Dorow-Gerspach
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rüdiger Schmidt
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niklas Wolff
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Schürmann
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yannic Decker
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lorenz Kienle
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Wuttig
  • Corresponding author
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Janek
  • Corresponding author
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-03 | DOI: https://doi.org/10.1515/zkri-2016-1981


Most functional materials are thermodynamic equilibrium phases representing minima in the thermodynamic phase space. However, it is expected that many metastable phases with highly interesting properties also exist. Here, we report on a systematic approach to prepare thin-films of such non-equilibrium phases based on the gas phase deposition methods sputtering and pulsed laser deposition (PLD). Our synthetic strategy is to deposit a “precursor phase” which is amorphous or already a crystalline non-equilibrium phase. Subsequent heat treatment leads to the nucleation of crystalline phases which again may be metastable or stable compounds. In the present paper we focus on the binary systems Ti–O and Zr–O, both systems being widely applied and technologically relevant. Highly oxygen-deficient titanium oxide (TiO1.6) and zirconium oxide (ZrO) films prepared by pulsed laser deposition at room temperature are optically absorbing and possess electronic conductivities in the range of 10 S/cm. Both materials are metastable in respect to both composition and structure. For TiO1.6 we find an amorphous matrix with embedded grains of cubic titanium monoxide (γ-TiO) directly after deposition. Upon annealing nanocrystalline grains of metallic Ti are formed in the amorphous matrix due to an internal solid-state disproportionation whereas the electrical conductivity of the films increases and comes close to metal-like conductivity (1000 S/cm) at about 450 °C. Congruently, room temperature deposited ZrO films with an average composition of Zr:O= 1:1 contain small ZrO nanocrystals within an amorphous matrix. Heat treatment again leads to an internal disproportionation reaction whereas small crystals of Zr2O and ZrO2 precipitate at temperatures as low as 75 °C. Increasing the temperature then results in the crystallization of metastable tetragonal ZrO2 at about 400 °C. Sputter deposition allows a subtler control of the oxygen partial pressure. Slightly non-stoichiometric TiO2−x films form a degenerate semiconductor with room temperature conductivities as high as 170 S/cm. Moreover, controlling both, the doping level and the vacancy concentration of these films allows to control the phase formation and the transition temperature between the rutile and anatase TiO2 polymorphs. Niobium doping of sputter deposited TiO2 can lead to films with very high electrical conductivities while maintaining a high optical transmittance demonstrating the potential of the material as an alternative transparent conducting oxide (TCO) with extraordinary properties.

Keywords: anatase; hafnia; memristors; resistive switches; TiO; titania; transparent conducting oxide; zirconia; ZrO


  • [1]

    J. C. Schön, M. Jansen, Auf dem Weg zur Syntheseplanung in der Festkorperchemie: Vorhersage existenzfähiger Strukturkandidaten mit Verfahren zur globalen Strukturoptimierung. Angew. Chem. Int. Ed. Engl. 1996, 35, 1287.Google Scholar

  • [2]

    J. C. Schön, M. Jansen, Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part I. Zeitschrift für Kristallographie, 2001, 216, 307.Google Scholar

  • [3]

    M. Jansen, Ein Konzept zur Syntheseplanung in der Festkörperchemie. Angew. Chem. 2002, 114, 3896.CrossrefGoogle Scholar

  • [4]

    N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 1997, 300, 113.CrossrefGoogle Scholar

  • [5]

    J. M. Lackner, W. Waldhauser, R. Ebner, W. Lenz, C. Suess, G. Jakopic, G. Leising, H. Hutter, Pulsed laser deposition: a new technique for deposition of amorphous SiOx thin films. Surf. Coatings Technol. 2003, 163–164, 300.Google Scholar

  • [6]

    J. M. Ngaruiya, O. Kappertz, S. H. Mohamed, M. Wuttig, Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films. Appl. Phys. Lett. 2004, 85, 748.CrossrefGoogle Scholar

  • [7]

    F. O. Adurodija, L. Semple, R. Brüning, Real-time in situ crystallization and electrical properties of pulsed laser deposited indium oxide thin films. Thin Solid Films 2005, 492, 153.CrossrefGoogle Scholar

  • [8]

    P. Katiyar, C. Jin, R. J. Narayan, Electrical properties of amorphous aluminum oxide thin films. Acta Mater. 2005, 53, 2617.CrossrefGoogle Scholar

  • [9]

    L. Nagarajan, R. A. de Souza, D. Samuelis, I. Valov, A. Börger, J. Janek, K.-D. Becker, P. C. Schmidt, M. Martin, A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 2008, 7, 391.CrossrefGoogle Scholar

  • [10]

    Y. Aoki, C. Wiemann, V. Feyer, H.-S. Kim, C. M. Schneider, H. Ill-Yoo, M. Martin, Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 2014, 5, 3473.Google Scholar

  • [11]

    H. Schmalzried, A. Navrotsky, Festkörperthermodynamik: Chemie des festen Zustandes. Verlag Chemie, Weinheim, 1975.Google Scholar

  • [12]

    R. W. Eason, Pulsed Laser Deposition of Thin Films. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.Google Scholar

  • [13]

    C. Korte, J. Keppner, A. Peters, N. Schichtel, H. Aydin, J. Janek, Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes – an improved model for nanocrystalline thin films and a review of experimental data. Phys. Chem. Chem. Phys. 2014, 16, 24575.CrossrefGoogle Scholar

  • [14]

    J. Reinacher, S. Berendts, J. Janek, Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 2014, 258, 1.CrossrefGoogle Scholar

  • [15]

    W. Bensch, E. Quiroga-Gonzalez, L. Kienle, V. Duppel, D. K. Lee, J. Janek, In-CuInS2 nanocomposite film prepared by pulsed laser deposition using a single source precursor. Solid State Sci. 2010, 12, 1953.CrossrefGoogle Scholar

  • [16]

    K. Wasa, KannoI, H. Kotera, Handbook of Sputter Deposition Technology, 2nd ed. Elsevier Inc., Waltham, USA, 2012.Google Scholar

  • [17]

    R. M. Schmidt, Doping in thin film applications. Exploiting the potential of serial magnetron co-sputtering. RWTH Aachen, 2014.Google Scholar

  • [18]

    H.-I. Yoo, J.-H. Lee, M. Martin, J. Janek, H. Schmalzried, Experimental evidence of the interference between ionic and electronic flows in an oxide with prevailing electronic conduction. Solid State Ionics 1994, 67, 317.CrossrefGoogle Scholar

  • [19]

    S. Andersson, B. Collen, U. Kuylenstierna, A. Magneli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 1957, 11, 1641.CrossrefGoogle Scholar

  • [20]

    C. J. Howard, R. J. Hill, B. E. Reichert, Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1988, 44, 116.CrossrefGoogle Scholar

  • [21]

    J. P. Abriata, R. Versaci, The O-Zr (Oxygen-Zirconium) system. Bullletin Alloy Phase Diagrams 1986, 7, 116.CrossrefGoogle Scholar

  • [22]

    S. Fabris, A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 2002, 50, 5171.CrossrefGoogle Scholar

  • [23]

    R. C. Garvie, P. S. Nicholson, Phase analysis in zirconia systems. J. Am. Ceram. Soc. 1972, 55, 303.CrossrefGoogle Scholar

  • [24]

    M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Thin films: unexpected magnetism in a dielectric oxide. Nature 2004, 430, 630.CrossrefGoogle Scholar

  • [25]

    J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, L. S. Dorneles, “Magnetism in hafnium dioxide. Phys. Rev. B – Condens. Matter Mater. Phys. 2005, 72, 3.Google Scholar

  • [26]

    M. Liu, T. Leichtweiß, J. Janek, M. Martin, In-situ structural investigation of non-stoichiometric HfO2-x films using quick-scanning extended X-ray absorption fine structure. Thin Solid Films 2013, 539, 60.CrossrefGoogle Scholar

  • [27]

    S. Berg, H. Blom, T. Larsson, C. Nender, Modeling of reactive sputtering of compound materials. J. Vac. Sci. Technol. A. 1987, 5, 202.CrossrefGoogle Scholar

  • [28]

    S. Berg, T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 2005, 476, 215.CrossrefGoogle Scholar

  • [29]

    S. Berg, E. Särhammar, T. Nyberg, Upgrading the ‘berg-model’ for reactive sputtering processes. Thin Solid Films 2014, 565, 186.CrossrefGoogle Scholar

  • [30]

    A. Belkind, Cosputtering and serial cosputtering using cylindrical rotatable magnetrons. J. Vac. Sci. Technol. A 1993, 11, 1501.CrossrefGoogle Scholar

  • [31]

    T. Kubart, R. M. Schmidt, M. Austgen, T. Nyberg, A. Pflug, M. Siemers, M. Wuttig, S. Berg, Modelling of sputtering yield amplification in serial reactive magnetron co-sputtering. Surf. Coatings Technol. 2012, 206, 5055.CrossrefGoogle Scholar

  • [32]

    M. Austgen, D. Koehl, P. Zalden, T. Kubart, T. Nyberg, A. Pflug, M. Siemers, S. Berg, M. Wuttig, Sputter yield amplification by tungsten doping of Al2O3 employing reactive serial co-sputtering: process characteristics and resulting film properties. J. Phys. D 2011, 345501, 11.Google Scholar

  • [33]

    J. T. Jackson, B. S. Palmer, Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J. Phys. D. Appl. Phys. 1994, 27, 1581.CrossrefGoogle Scholar

  • [34]

    J. Cheung, J. Horwitz, Pulsed laser deposition history and laser-target interactions. MRS Bull. 1992, 17, 30.CrossrefGoogle Scholar

  • [35]

    A. F. Ioffe, A. R. Regel, Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 1960, 4, 237.Google Scholar

  • [36]

    L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Inst. Methods Phys. Res. B, 1985, 9, 344.CrossrefGoogle Scholar

  • [37]

    D. A. Shirley, High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B, 1972, 5, 4709.CrossrefGoogle Scholar

  • [38]

    T. Leichtweiss, R. A. Henning, J. Koettgen, R. M. Schmidt, B. Holländer, M. Martin, M. Wuttig, J. Janek, Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. J. Mater. Chem. A, 2014, 2, 6631.CrossrefGoogle Scholar

  • [39]

    M. Cancarevic, M. Zinkevich, F. Aldinger, Thermodynamic description of the Ti-O system using the associate model for the liquid phase. Calphad. 2007, 31, 330.CrossrefGoogle Scholar

  • [40]

    D. A. H. Hanaor, C. C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855.CrossrefGoogle Scholar

  • [41]

    S. P. Denker, Electronic properties of titanium monoxide. J. Appl. Phys. 1966, 37, 142.CrossrefGoogle Scholar

  • [42]

    R. R. Bartholomew, D. R. Frankl, Electrical properties of some titanium oxides. Phys. Rev. 1969, 187, 828.CrossrefGoogle Scholar

  • [43]

    M. C. Marchi, S. A. Bilmes, C. T. M. Ribeiro, E. A. Ochoa, M. Kleinke, F. Alvarez, A comprehensive study of the influence of the stoichiometry on the physical properties of TiOx films prepared by ion beam deposition. J. Appl. Phys. 2010, 108, 064912.CrossrefGoogle Scholar

  • [44]

    Y. Davila, A. Petitmangin, C. Hebert, J. Perrière, W. Seiler, Oxygen deficiency in oxide films grown by PLD. Appl. Surf. Sci. 2011, 257, 5354.CrossrefGoogle Scholar

  • [45]

    N. Sbaï, J. Perrière, W. Seiler, E. Millon, Epitaxial growth of titanium oxide thin films on c-cut and α-cut sapphire substrates. Surf. Sci. 2007, 601, 5649.CrossrefGoogle Scholar

  • [46]

    R. Gouttebaron, D. Cornelissen, R. Snyders, J. P. Dauchot, M. Wautelet, M. Hecq, XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar-O2 gas mixtures. Surf. Interface Anal. 2000, 30, 527.CrossrefGoogle Scholar

  • [47]

    Z. G. Li, S. Miyake, M. Makino, Y. X. Wu, Microstructure and properties of nanocrystalline titanium monoxide films synthesized by inductively coupled plasma assisted reactive direct current magnetron sputtering. Appl. Surf. Sci. 2008, 255, Part 1, 2370.CrossrefGoogle Scholar

  • [48]

    G. S. Chen, C. C. Lee, H. Niu, W. Huang, R. Jann, T. Schütte, Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy. Thin Solid Films 2008, 516, 8473.CrossrefGoogle Scholar

  • [49]

    O. Banakh, P. E. Schmid, R. Sanjinés, F. Lévy, Electrical and optical properties of TiOx thin films deposited by reactive magnetron sputtering. Surf. Coatings Technol. 2002, 151–152, 272.Google Scholar

  • [50]

    D.-S. Ko, S.-I. Kim, T.-Y. Ahn, S.-D. Kim, Y.-H. Oh, Y.-W. Kim, Effect of the electrode materials on the resistive switching of Ti4O7. Appl. Phys. Lett. 2012, 101, 053502.CrossrefGoogle Scholar

  • [51]

    R. Tu, G. Huo, T. Kimura, T. Goto, Preparation of Magnéli phases of Ti27O52 and Ti6O11 films by laser chemical vapor deposition. Thin Solid Films 2010, 518, 6927.CrossrefGoogle Scholar

  • [52]

    A. F. Carley, P. R. Chalker, J. C. Riviere, M. W. Roberts, The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83, 351.Google Scholar

  • [53]

    E. McCafferty, J. P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549.CrossrefGoogle Scholar

  • [54]

    E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S. K. Kim, C. S. Hwang, First-principles study of point defects in rutile TiO2-x. Phys. Rev. B 2006, 73, 125205.CrossrefGoogle Scholar

  • [55]

    H. P. R. Frederikse, Recent studies on rutile (TiO2). J. Appl. Phys. 1961, 32, 2211.CrossrefGoogle Scholar

  • [56]

    H. Okamoto, O-Ti (Oxygen-Titanium). J. Phase Equilibria Diffus. 2011, 32, 1.Google Scholar

  • [57]

    A. K. Podshivalova, I. K. Karpov, Thermodynamic analysis of the stability of titanium oxides in the TiO-TiO2 range. Russ. J. Inorg. Chem. 2007, 52, 1147.CrossrefGoogle Scholar

  • [58]

    H. Schmalzried, On the equilibration of solid phases. Some thoughts on Ostwalds contributions. Zeitschrift für Phys. Chemie 2003, 217, 1281.CrossrefGoogle Scholar

  • [59]

    D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G. I. Rusu, On the structure, morphology and electrical conductivities of titanium oxide thin films. Surface Science 2002, 507–510, 468.Google Scholar

  • [60]

    H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994, 75, 2042.CrossrefGoogle Scholar

  • [61]

    F. Bloch, Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen. Zeitschrift für Phys. 1930, 59, 208.CrossrefGoogle Scholar

  • [62]

    R. D. Shannon, J. A. Pask, Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 1965, 48, 391.CrossrefGoogle Scholar

  • [63]

    G. Li, L. Li, J. Boerio-Goates, B. F. Woodfield, High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 2005, 127, 8659.CrossrefGoogle Scholar

  • [64]

    Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 2005, 86, 1–3.Google Scholar

  • [65]

    M. W. Chase, NIST-JANAF Thermochemical Tables. 1998.Google Scholar

  • [66]

    International Commission of Illumination CIE. Standard colorimetric observer data. 1931.Google Scholar

  • [67]

    C. Morant, J. M. Sanz, L. Galan, L. Soriano, and F. Rueda, An XPS Study of the interaction of oxygen with zirconium. Surf. Sci. 1989, 218, 331.CrossrefGoogle Scholar

  • [68]

    N. Lakshmi, H.-I. Yoo, and M. Martin, Oxidation Kinetics of Zirconium Examined by In Situ X-ray Diffraction. J. Electrochem. Soc. 2013, 160, C136.CrossrefGoogle Scholar

  • [69]

    R. C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 1978, 82, 218.CrossrefGoogle Scholar

About the article

Received: 2016-06-20

Accepted: 2016-08-22

Published Online: 2017-02-03

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 161–183, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1981.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in