Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)

Issues

Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications

Ralph A. Henning
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
/ Thomas Leichtweiss
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
/ Daniel Dorow-Gerspach
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
/ Rüdiger Schmidt
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
/ Niklas Wolff
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
/ Ulrich Schürmann
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
/ Yannic Decker
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
/ Lorenz Kienle
  • Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
/ Matthias Wuttig
  • Corresponding author
  • Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52056 Aachen, Germany
  • Email:
/ Jürgen Janek
  • Corresponding author
  • Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
  • Email:
Published Online: 2017-02-03 | DOI: https://doi.org/10.1515/zkri-2016-1981

Abstract

Most functional materials are thermodynamic equilibrium phases representing minima in the thermodynamic phase space. However, it is expected that many metastable phases with highly interesting properties also exist. Here, we report on a systematic approach to prepare thin-films of such non-equilibrium phases based on the gas phase deposition methods sputtering and pulsed laser deposition (PLD). Our synthetic strategy is to deposit a “precursor phase” which is amorphous or already a crystalline non-equilibrium phase. Subsequent heat treatment leads to the nucleation of crystalline phases which again may be metastable or stable compounds. In the present paper we focus on the binary systems Ti–O and Zr–O, both systems being widely applied and technologically relevant. Highly oxygen-deficient titanium oxide (TiO1.6) and zirconium oxide (ZrO) films prepared by pulsed laser deposition at room temperature are optically absorbing and possess electronic conductivities in the range of 10 S/cm. Both materials are metastable in respect to both composition and structure. For TiO1.6 we find an amorphous matrix with embedded grains of cubic titanium monoxide (γ-TiO) directly after deposition. Upon annealing nanocrystalline grains of metallic Ti are formed in the amorphous matrix due to an internal solid-state disproportionation whereas the electrical conductivity of the films increases and comes close to metal-like conductivity (1000 S/cm) at about 450 °C. Congruently, room temperature deposited ZrO films with an average composition of Zr:O= 1:1 contain small ZrO nanocrystals within an amorphous matrix. Heat treatment again leads to an internal disproportionation reaction whereas small crystals of Zr2O and ZrO2 precipitate at temperatures as low as 75 °C. Increasing the temperature then results in the crystallization of metastable tetragonal ZrO2 at about 400 °C. Sputter deposition allows a subtler control of the oxygen partial pressure. Slightly non-stoichiometric TiO2−x films form a degenerate semiconductor with room temperature conductivities as high as 170 S/cm. Moreover, controlling both, the doping level and the vacancy concentration of these films allows to control the phase formation and the transition temperature between the rutile and anatase TiO2 polymorphs. Niobium doping of sputter deposited TiO2 can lead to films with very high electrical conductivities while maintaining a high optical transmittance demonstrating the potential of the material as an alternative transparent conducting oxide (TCO) with extraordinary properties.

Keywords: anatase; hafnia; memristors; resistive switches; TiO; titania; transparent conducting oxide; zirconia; ZrO

References

  • [1]

    J. C. Schön, M. Jansen, Auf dem Weg zur Syntheseplanung in der Festkorperchemie: Vorhersage existenzfähiger Strukturkandidaten mit Verfahren zur globalen Strukturoptimierung. Angew. Chem. Int. Ed. Engl. 1996, 35, 1287.Google Scholar

  • [2]

    J. C. Schön, M. Jansen, Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part I. Zeitschrift für Kristallographie, 2001, 216, 307.Google Scholar

  • [3]

    M. Jansen, Ein Konzept zur Syntheseplanung in der Festkörperchemie. Angew. Chem. 2002, 114, 3896.Google Scholar

  • [4]

    N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 1997, 300, 113.Google Scholar

  • [5]

    J. M. Lackner, W. Waldhauser, R. Ebner, W. Lenz, C. Suess, G. Jakopic, G. Leising, H. Hutter, Pulsed laser deposition: a new technique for deposition of amorphous SiOx thin films. Surf. Coatings Technol. 2003, 163–164, 300.Google Scholar

  • [6]

    J. M. Ngaruiya, O. Kappertz, S. H. Mohamed, M. Wuttig, Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films. Appl. Phys. Lett. 2004, 85, 748.Google Scholar

  • [7]

    F. O. Adurodija, L. Semple, R. Brüning, Real-time in situ crystallization and electrical properties of pulsed laser deposited indium oxide thin films. Thin Solid Films 2005, 492, 153.Google Scholar

  • [8]

    P. Katiyar, C. Jin, R. J. Narayan, Electrical properties of amorphous aluminum oxide thin films. Acta Mater. 2005, 53, 2617.Google Scholar

  • [9]

    L. Nagarajan, R. A. de Souza, D. Samuelis, I. Valov, A. Börger, J. Janek, K.-D. Becker, P. C. Schmidt, M. Martin, A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 2008, 7, 391.Google Scholar

  • [10]

    Y. Aoki, C. Wiemann, V. Feyer, H.-S. Kim, C. M. Schneider, H. Ill-Yoo, M. Martin, Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 2014, 5, 3473.Google Scholar

  • [11]

    H. Schmalzried, A. Navrotsky, Festkörperthermodynamik: Chemie des festen Zustandes. Verlag Chemie, Weinheim, 1975.Google Scholar

  • [12]

    R. W. Eason, Pulsed Laser Deposition of Thin Films. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.Google Scholar

  • [13]

    C. Korte, J. Keppner, A. Peters, N. Schichtel, H. Aydin, J. Janek, Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes – an improved model for nanocrystalline thin films and a review of experimental data. Phys. Chem. Chem. Phys. 2014, 16, 24575.Google Scholar

  • [14]

    J. Reinacher, S. Berendts, J. Janek, Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 2014, 258, 1.Google Scholar

  • [15]

    W. Bensch, E. Quiroga-Gonzalez, L. Kienle, V. Duppel, D. K. Lee, J. Janek, In-CuInS2 nanocomposite film prepared by pulsed laser deposition using a single source precursor. Solid State Sci. 2010, 12, 1953.Google Scholar

  • [16]

    K. Wasa, KannoI, H. Kotera, Handbook of Sputter Deposition Technology, 2nd ed. Elsevier Inc., Waltham, USA, 2012.Google Scholar

  • [17]

    R. M. Schmidt, Doping in thin film applications. Exploiting the potential of serial magnetron co-sputtering. RWTH Aachen, 2014.Google Scholar

  • [18]

    H.-I. Yoo, J.-H. Lee, M. Martin, J. Janek, H. Schmalzried, Experimental evidence of the interference between ionic and electronic flows in an oxide with prevailing electronic conduction. Solid State Ionics 1994, 67, 317.Google Scholar

  • [19]

    S. Andersson, B. Collen, U. Kuylenstierna, A. Magneli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 1957, 11, 1641.Google Scholar

  • [20]

    C. J. Howard, R. J. Hill, B. E. Reichert, Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1988, 44, 116.Google Scholar

  • [21]

    J. P. Abriata, R. Versaci, The O-Zr (Oxygen-Zirconium) system. Bullletin Alloy Phase Diagrams 1986, 7, 116.Google Scholar

  • [22]

    S. Fabris, A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 2002, 50, 5171.Google Scholar

  • [23]

    R. C. Garvie, P. S. Nicholson, Phase analysis in zirconia systems. J. Am. Ceram. Soc. 1972, 55, 303.Google Scholar

  • [24]

    M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Thin films: unexpected magnetism in a dielectric oxide. Nature 2004, 430, 630.Google Scholar

  • [25]

    J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, L. S. Dorneles, “Magnetism in hafnium dioxide. Phys. Rev. B – Condens. Matter Mater. Phys. 2005, 72, 3.Google Scholar

  • [26]

    M. Liu, T. Leichtweiß, J. Janek, M. Martin, In-situ structural investigation of non-stoichiometric HfO2-x films using quick-scanning extended X-ray absorption fine structure. Thin Solid Films 2013, 539, 60.Google Scholar

  • [27]

    S. Berg, H. Blom, T. Larsson, C. Nender, Modeling of reactive sputtering of compound materials. J. Vac. Sci. Technol. A. 1987, 5, 202.Google Scholar

  • [28]

    S. Berg, T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 2005, 476, 215.Google Scholar

  • [29]

    S. Berg, E. Särhammar, T. Nyberg, Upgrading the ‘berg-model’ for reactive sputtering processes. Thin Solid Films 2014, 565, 186.Google Scholar

  • [30]

    A. Belkind, Cosputtering and serial cosputtering using cylindrical rotatable magnetrons. J. Vac. Sci. Technol. A 1993, 11, 1501.Google Scholar

  • [31]

    T. Kubart, R. M. Schmidt, M. Austgen, T. Nyberg, A. Pflug, M. Siemers, M. Wuttig, S. Berg, Modelling of sputtering yield amplification in serial reactive magnetron co-sputtering. Surf. Coatings Technol. 2012, 206, 5055.Google Scholar

  • [32]

    M. Austgen, D. Koehl, P. Zalden, T. Kubart, T. Nyberg, A. Pflug, M. Siemers, S. Berg, M. Wuttig, Sputter yield amplification by tungsten doping of Al2O3 employing reactive serial co-sputtering: process characteristics and resulting film properties. J. Phys. D 2011, 345501, 11.Google Scholar

  • [33]

    J. T. Jackson, B. S. Palmer, Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J. Phys. D. Appl. Phys. 1994, 27, 1581.Google Scholar

  • [34]

    J. Cheung, J. Horwitz, Pulsed laser deposition history and laser-target interactions. MRS Bull. 1992, 17, 30.Google Scholar

  • [35]

    A. F. Ioffe, A. R. Regel, Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 1960, 4, 237.Google Scholar

  • [36]

    L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Inst. Methods Phys. Res. B, 1985, 9, 344.Google Scholar

  • [37]

    D. A. Shirley, High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B, 1972, 5, 4709.Google Scholar

  • [38]

    T. Leichtweiss, R. A. Henning, J. Koettgen, R. M. Schmidt, B. Holländer, M. Martin, M. Wuttig, J. Janek, Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. J. Mater. Chem. A, 2014, 2, 6631.Google Scholar

  • [39]

    M. Cancarevic, M. Zinkevich, F. Aldinger, Thermodynamic description of the Ti-O system using the associate model for the liquid phase. Calphad. 2007, 31, 330.Google Scholar

  • [40]

    D. A. H. Hanaor, C. C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855.Google Scholar

  • [41]

    S. P. Denker, Electronic properties of titanium monoxide. J. Appl. Phys. 1966, 37, 142.Google Scholar

  • [42]

    R. R. Bartholomew, D. R. Frankl, Electrical properties of some titanium oxides. Phys. Rev. 1969, 187, 828.Google Scholar

  • [43]

    M. C. Marchi, S. A. Bilmes, C. T. M. Ribeiro, E. A. Ochoa, M. Kleinke, F. Alvarez, A comprehensive study of the influence of the stoichiometry on the physical properties of TiOx films prepared by ion beam deposition. J. Appl. Phys. 2010, 108, 064912.Google Scholar

  • [44]

    Y. Davila, A. Petitmangin, C. Hebert, J. Perrière, W. Seiler, Oxygen deficiency in oxide films grown by PLD. Appl. Surf. Sci. 2011, 257, 5354.Google Scholar

  • [45]

    N. Sbaï, J. Perrière, W. Seiler, E. Millon, Epitaxial growth of titanium oxide thin films on c-cut and α-cut sapphire substrates. Surf. Sci. 2007, 601, 5649.Google Scholar

  • [46]

    R. Gouttebaron, D. Cornelissen, R. Snyders, J. P. Dauchot, M. Wautelet, M. Hecq, XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar-O2 gas mixtures. Surf. Interface Anal. 2000, 30, 527.Google Scholar

  • [47]

    Z. G. Li, S. Miyake, M. Makino, Y. X. Wu, Microstructure and properties of nanocrystalline titanium monoxide films synthesized by inductively coupled plasma assisted reactive direct current magnetron sputtering. Appl. Surf. Sci. 2008, 255, Part 1, 2370.Google Scholar

  • [48]

    G. S. Chen, C. C. Lee, H. Niu, W. Huang, R. Jann, T. Schütte, Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy. Thin Solid Films 2008, 516, 8473.Google Scholar

  • [49]

    O. Banakh, P. E. Schmid, R. Sanjinés, F. Lévy, Electrical and optical properties of TiOx thin films deposited by reactive magnetron sputtering. Surf. Coatings Technol. 2002, 151–152, 272.Google Scholar

  • [50]

    D.-S. Ko, S.-I. Kim, T.-Y. Ahn, S.-D. Kim, Y.-H. Oh, Y.-W. Kim, Effect of the electrode materials on the resistive switching of Ti4O7. Appl. Phys. Lett. 2012, 101, 053502.Google Scholar

  • [51]

    R. Tu, G. Huo, T. Kimura, T. Goto, Preparation of Magnéli phases of Ti27O52 and Ti6O11 films by laser chemical vapor deposition. Thin Solid Films 2010, 518, 6927.Google Scholar

  • [52]

    A. F. Carley, P. R. Chalker, J. C. Riviere, M. W. Roberts, The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83, 351.Google Scholar

  • [53]

    E. McCafferty, J. P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549.Google Scholar

  • [54]

    E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S. K. Kim, C. S. Hwang, First-principles study of point defects in rutile TiO2-x. Phys. Rev. B 2006, 73, 125205.Google Scholar

  • [55]

    H. P. R. Frederikse, Recent studies on rutile (TiO2). J. Appl. Phys. 1961, 32, 2211.Google Scholar

  • [56]

    H. Okamoto, O-Ti (Oxygen-Titanium). J. Phase Equilibria Diffus. 2011, 32, 1.Google Scholar

  • [57]

    A. K. Podshivalova, I. K. Karpov, Thermodynamic analysis of the stability of titanium oxides in the TiO-TiO2 range. Russ. J. Inorg. Chem. 2007, 52, 1147.Google Scholar

  • [58]

    H. Schmalzried, On the equilibration of solid phases. Some thoughts on Ostwalds contributions. Zeitschrift für Phys. Chemie 2003, 217, 1281.Google Scholar

  • [59]

    D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G. I. Rusu, On the structure, morphology and electrical conductivities of titanium oxide thin films. Surface Science 2002, 507–510, 468.Google Scholar

  • [60]

    H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994, 75, 2042.Google Scholar

  • [61]

    F. Bloch, Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen. Zeitschrift für Phys. 1930, 59, 208.Google Scholar

  • [62]

    R. D. Shannon, J. A. Pask, Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 1965, 48, 391.Google Scholar

  • [63]

    G. Li, L. Li, J. Boerio-Goates, B. F. Woodfield, High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 2005, 127, 8659.Google Scholar

  • [64]

    Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 2005, 86, 1–3.Google Scholar

  • [65]

    M. W. Chase, NIST-JANAF Thermochemical Tables. 1998.Google Scholar

  • [66]

    International Commission of Illumination CIE. Standard colorimetric observer data. 1931.Google Scholar

  • [67]

    C. Morant, J. M. Sanz, L. Galan, L. Soriano, and F. Rueda, An XPS Study of the interaction of oxygen with zirconium. Surf. Sci. 1989, 218, 331.Google Scholar

  • [68]

    N. Lakshmi, H.-I. Yoo, and M. Martin, Oxidation Kinetics of Zirconium Examined by In Situ X-ray Diffraction. J. Electrochem. Soc. 2013, 160, C136.Google Scholar

  • [69]

    R. C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 1978, 82, 218.Google Scholar

About the article

Received: 2016-06-20

Accepted: 2016-08-22

Published Online: 2017-02-03

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1981.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in