Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 1-3 (Feb 2017)


Type-I silicon clathrates containing lithium

Bodo Böhme
  • Corresponding author
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
  • Email:
/ Matej Bobnar
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
/ Alim Ormeci
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
/ Sarah Peters
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
/ Walter Schnelle
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
/ Michael Baitinger
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
/ Yuri Grin
  • Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
Published Online: 2016-11-02 | DOI: https://doi.org/10.1515/zkri-2016-1983


The intermetallic phase [LixBa8−x][LiySi46−y] is the first example of a clathrate-I silicide containing lithium with the peculiarity that the Li atoms occupy both cage and framework positions. The phase was obtained by ambient-pressure solid-state reactions at 400°C between Ba4Li2Si6 and the binary clathrate phase Ba8−xSi46 applying different experimental approaches. In this reaction, Li atoms substitute Si atoms of the framework at site 6c (space group Pmn) and fill up the Ba-deficient dodecahedral Si20 cages at site 2a. The presence of Li atoms in the clathrate phase was proven by combined X-ray powder diffraction, 7Li and 29Si solid-state NMR analyses. Incorporation of lithium markedly increased the lattice parameter of the clathrate phase, e.g. from a=10.3200(2) Å for Ba7.48(2)Si46 to a=10.3715(3) Å for [Li0.59(2)Ba7.41(2)][Li2.3(1)Si43.7(1)]. The critical temperature Tc for the transition to the superconducting state decreased from 7.7 K to 3.2 K upon Li incorporation.

Keywords: Ba8−xSi46; clathrate; Li-Clathrate; metastable; SPP1415


  • [1]

    A. Grüttner, R. Nesper, H. G. von Schnering, Angew. Chem. Int. Ed. 1982, 21, 912.Google Scholar

  • [2]

    H. G. von Schnering, M. Schwarz, R. Nesper, J. Less-Comm. Met. 1988, 137, 297.Google Scholar

  • [3]

    A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y.Grin, Nature 2006, 443, 320.Google Scholar

  • [4]

    B. Böhme, S. Hoffmann, M. Baitinger, Y. Grin, Z. Naturforsch. 2011, 66b, 230.Google Scholar

  • [5]

    F. Kiefer, A. J. Karttunen, M. Döblinger, T. F. Fässler, Chem. Mater. 2011, 23, 4578.Google Scholar

  • [6]

    P. F. McMillan, J. Gryko, G. Bull, R. Arledge, A. J. Kenyon, B. A. Cressey, J. Solid State Chem. 2005, 178, 937.Google Scholar

  • [7]

    D. Neiner, H. W. Chiu, S. M. Kauzlarich, J. Am. Chem. Soc. 2006, 128, 11016.Google Scholar

  • [8]

    M. Zeilinger, L.-A. Jantke, L. M. Scherf, F. J. Kiefer, G. Neubüser, L. Kienle, A. J. Karttunen, S. Konar, U. Häussermann, T. F. Fässler, Chem. Mater. 2014, 26, 6603.Google Scholar

  • [9]

    B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, J. Am. Chem. Soc. 2007, 129, 5348.Google Scholar

  • [10]

    Y. Liang, B. Böhme, M. Reibold, W. Schnelle, U. Schwarz, M. Baitinger, H. Lichte, Y. Grin, Inorg. Chem. 2011, 50, 4523.Google Scholar

  • [11]

    M. C. Blosser, G. S. Nolas, Mat. Lett. 2013, 99, 161.Google Scholar

  • [12]

    B. Böhme, M. Reibold, G. Auffermann, H. Lichte, M. Baitinger, Y. Grin, Z. Kristallogr. 2014, 229, 677.Google Scholar

  • [13]

    Y. Liang, B. Böhme, L. Vasylechko, M. Baitinger, Y. Grin, J. Phys. Chem. Sol. 2013, 74, 225.Google Scholar

  • [14]

    P. Simon, Z. Tang, W. Carrillo-Cabrera, K. Chiong, B. Böhme, M. Baitinger, H. Lichte, Yu. Grin, A. M. Guloy, J. Am. Chem. Soc.2011, 133, 7596.Google Scholar

  • [15]

    A. M. Guloy, Z. Tang, R. Ramlau, B. Böhme,M. Baitinger, Y. Grin, Eur. J. Inorg. Chem. 2009, 2455.Google Scholar

  • [16]

    S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, Inorg. Chem. 2000, 39, 56.Google Scholar

  • [17]

    B. Sun, X. Jia, D. Huo, X. Guo, H. Sun, Y. Zhang, B. Liu, H. Ma, Mod. Phys. Lett. B 2015, 29, 1550214.Google Scholar

  • [18]

    B. Böhme, U. Aydemir, A. Ormeci, W. Schnelle, M. Baitinger, Y. Grin, Sci. Technol. Adv. Mat. 2007, 8, 410.Google Scholar

  • [19]

    T. Langer, S. Dupke, H. Trill, S. Passerini, H. Eckert, R. Pöttgen, M. Winter, J. Electrochem. Soc. 2012, 159, A1318.Google Scholar

  • [20]

    B. Böhme, C. B. Minella, F. Thoss, I. Lindemann, M. Rosenburg, C. Pistidda, K. T. Møller, T. R. Jensen, L. Giebeler, M. Baitinger, O. Gutfleisch, H. Ehrenberg, J. Eckert, Y. Grin, L. Schultz, Adv. Engin. Mat. 2014, 16, 1189.Google Scholar

  • [21]

    Y. Liang, B. Böhme, A. Ormeci, H. Borrmann, O. Pecher, F. Haarmann, W. Schnelle, M. Baitinger, Yu. Grin, Chem. Eur. J. 2012, 18, 9818.Google Scholar

  • [22]

    Y. Liang, W. Carrillo-Cabrera, A. Ormeci, B. Böhme, M. Baitinger, Yu. Grin, Z. Anorg. Allg. Chem.2015, 641, 339.Google Scholar

  • [23]

    C. Cros, M. Pouchard, C. R. Chim. 2009, 12, 1014–1056.Google Scholar

  • [24]

    Y. Liang, W. Schnelle, I. Veremchuk, B. Böhme, M. Baitinger, Yu. Grin, J. Electron. Mat. 2015, 44, 4444.Google Scholar

  • [25]

    H. G. von Schnering, U. Bolle, J. Curda, K. Peters, W. Carrillo-Cabrera, M. Somer, M. Schultheiss, U. Wedig, Angew. Chem. Int. Ed. Engl. 1996, 35, 984.Google Scholar

  • [26]

    T. Goebel, Y. Prots, F. Haarmann, Z. Kristallogr. NCS 2009, 224, 7.Google Scholar

  • [27]

    U. Aydemir, A. Ormeci, H. Borrmann, B. Böhme, F. Zürcher, B. Uslu, T. Goebel, W. Schnelle, P. Simon, W. Carrillo-Cabrera, F. Haarmann, M. Baitinger, R. Nesper, H. G. von Schnering, Yu. Grin, Z. Anorg. Allg. Chem. 2008, 634, 1651.Google Scholar

  • [28]

    R. Castillo, W. Schnelle, M. Bobnar, U. Burkhardt, B. Böhme, M. Baitinger, U. Schwarz, Yu. Grin, Z. Anorg. Allg. Chem. 2015, 641, 206.Google Scholar

  • [29]

    WinCSD: L. Akselrud, Y. Grin, J. Appl. Cryst.2014, 47, 803.Google Scholar

  • [30]

    Jana2006: V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [31]

    K. Koepernik, H. Eschrig, Phys. Rev. B 1999, 59, 1743.Google Scholar

  • [32]

    J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.Google Scholar

  • [33]

    H. Fukuoka, J. Kiyoto, S. Yamanaka, Inorg. Chem. 2003, 42, 2933.Google Scholar

  • [34]

    B. Böhme, Yu. Grin, unpublished results.Google Scholar

  • [35]

    B. Böhme, Neue Präparationswege für intermetallische Verbindungen, doctoral thesis, TU Dresden, published in Logos Berlin 2010.Google Scholar

  • [36]

    E. B. Brackett, T. E. Brackett, R. L. Sass, J. Phys. Chem. 1963, 67, 2132.Google Scholar

  • [37]

    S. Yamanaka, Dalton Trans. 2010, 39, 1901.Google Scholar

  • [38]

    M. Bobnar, B. Böhme, M. Wedel, U. Burkhardt, A. Ormeci, Y. Prots, C. Drathen, Y. Liang, H. D. Nguyen, M. Baitinger, Y. Grin, Dalton Trans. 2015, 44, 12680.Google Scholar

  • [39]

    H. P. Grosse, E. Tillmanns, Cryst. Struct. Commun. 1974, 3, 599.Google Scholar

  • [40]

    H. Sakamoto, H. Tou, H. Ishii, Y. Maniwa, E. A. Reny, S. Yamanaka, Physica C 2000, 341–348, 2135.Google Scholar

  • [41]

    Y. Maniwa, H. Sakamoto, H. Tou, Y. Aoki, H. Sato, F. Shimizu, H. Kawaji, S. Yamanaka, Mol. Cryst. Liq. Cryst. 2000, 341, 497.Google Scholar

  • [42]

    H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, Yu. Grin, Inorg. Chem. 2011, 50, 1250.Google Scholar

  • [43]

    B. Liu, M. Saisho, Y. Nagatomo, T. Oka, T. Osada, H. Miura, O. Furukimi, S. Munetoh, Appl. Mech. Mater. 2013, 310, 59.Google Scholar

  • [44]

    N. Kamakura, T. Nakano, Y. Ikemoto, M. Usuda, H. Fukuoka, S. Yamanaka, S. Shin, K. Kobayashi, Phys. Rev. B 2005, 72, 014511.Google Scholar

  • [45]

    P. Warrier, C. A. Koh, Appl. Phys. Rev. 2016, 3, 040805.Google Scholar

  • [46]

    Y. Li, R. Raghavan, N. A. Wagner, S. K. Davidowski, L. Baggetto, R. Zhao, Q. Cheng, J. L. Yarger, G. M. Veith, C. Ellis-Terrell, M. A. Miller, K. S. Chan, C. K. Chan, Adv. Sci. 2015, 2, 1500057.Google Scholar

  • [47]

    N. A. Wagner, R. Raghavan, R. Zhao, Q. Wei, X. Peng, C. K. Chan, ChemElectroChem 2014, 1, 347.Google Scholar

  • [48]

    J. Yang, J. S. Tse, J. Mater. Chem. A 2013, 1, 7782–7789.Google Scholar

  • [49]

    X. Peng, Q. Wei, Y. Li, C. K. Chan, J. Phys. Chem. C 2015, 119, 28247.Google Scholar

  • [50]

    T. F. T. Cerqueira, S. Pailhès, R. Debord, V. M. Giordano, R. Viennois, J. Shi, S. Botti, M. A. L. Marques, Chem. Mater. 2016, 28, 3711.Google Scholar

  • [51]

    D. Li, S.-K. Deng, H.-R. Wang, Y.-F. Zhao, X.-F. Zi, Y. Tu, L. Fang, W.-H. Wei, Eur. Phys. J. Appl. Phys. 2013, 64, 30101.Google Scholar

About the article

Received: 2016-06-23

Accepted: 2016-10-01

Published Online: 2016-11-02

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1983.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in