Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 12

Issues

Synthesis, synchrotron diffraction study and twinning in Na2Ca4Mg2Si4O15 – a heteropolyhedral framework compound

Volker Kahlenberg
  • Corresponding author
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniela Schmidmair
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elias Hildebrandt
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Ennemoser
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus Zöll
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hannes Krüger
  • Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-29 | DOI: https://doi.org/10.1515/zkri-2017-2063

Abstract

The formation of polycrystalline Na2Ca4Mg2Si4O15 from solid state reactions has been studied between 800 and 1050°C. Single crystals of the compound have been grown in a closed platinum capsule by slow cooling in the temperature range between 1300 and 1000°C. Basic crystallographic data are as follows: monoclinic symmetry, space group P12/c1, a=7.1717(3) Å, b=5.3512(2) Å, c=16.4789(7) Å, β=90.911(4)°, V=632.33(4) Å3, Z=2. A conspicuous feature of the crystals is an intensive lamellar non-merohedral twinning clearly observable already under a petrographic microscope. The diffraction pattern can be explained as a superposition of two reciprocal lattices with a two-fold axis parallel to [001] being the twin element. Using synchrotron radiation it was possible to solve the crystal structure of Na2Ca4Mg2Si4O15 from a twinned data set. Least-squares refinements resulted in a residual of R(|F|)=0.031 for 2899 observed reflections with I>2σ(I) and 127 parameters. The crystal structure contains both [Si2O7]-dimers and insular [SiO4]-moieties. Tetrahedra and [MgO6]-octahedra form a three-dimensional framework whose topological characteristics have been studied. The remaining calcium and sodium cations are distributed among four crystallographically independent positions located in voids of the network. On a microscopic scale the twinning observed in the diffraction experiments could be explained by the existence of a 21-screw axis parallel to [001] in (¼, 0, z) mapping both domains onto each other. A comparison with related compounds having an A+2B2+6Si4O15 stoichiometry is presented. More than 25 years after its first observation in refractories our investigation clarifies the crystal structure of a silicate that is of relevance for both Materials science and high pressure research.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal growth; heteropolyhedral framework; Na2Ca4Mg2Si4O15; solid-state reactions; synchrotron diffraction; twinning

References

  • [1]

    G. W. Morey, The effect of magnesia on the devitrification of a soda-lime-silica-glass. J. Am. Ceram. Soc. 1930, 13, 714.CrossrefGoogle Scholar

  • [2]

    C. L. Babcock, Effect of substituting MgO for CaO on properties of typical soda-lime glasses. J. Amer. Ceram. Soc. 1944, 27, 221.CrossrefGoogle Scholar

  • [3]

    K. A. Shahid, F. P. Glasser, Phase equilibria in the glass forming region of the system sodium oxide – calcium oxide – magnesium oxide – silicon dioxide. Phys. Chem. Glasses 1972, 13, 27.Google Scholar

  • [4]

    M. Chromčiková, M. Liška, T. Gavenda, J. Macháček, Structure of Na2O-MgO-CaO-SiO2 glasses by combined Raman spectroscopy and thermodynamic modeling approach. J. Therm. Anal. Calorim. 2014, 118, 835.Web of ScienceCrossrefGoogle Scholar

  • [5]

    M. Chromčiková, M. Liška, J. Macháček, J. Chovanec, Thermodynamic model and viscosity of Na2O-MgO-CaO-SiO2 glasses. J. Non-Cryst. Solids 2014, 401, 237.Web of ScienceCrossrefGoogle Scholar

  • [6]

    A. Karamanov, M. Aloisi, M. Pelino, Sintering behavior of a glass obtained from MSWI ash. J. Eur. Ceram. Soc. 2005, 25, 1531.CrossrefGoogle Scholar

  • [7]

    G. A. C. M. Spierings, J. Vandijk, The dissolution of Na2O-MgO-CaO-SiO2 glass in aqueous HF solutions. J. Mater. Sci. 1987, 22, 1869.CrossrefGoogle Scholar

  • [8]

    H. Yang, J. Konzett, Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon. Am. Mineral. 2005, 90, 1223.CrossrefGoogle Scholar

  • [9]

    R. Hausner, M. Suppaner, X-ray powder diffraction data of a new compound Na2Ca4Mg2Si4O15. Powder Diffr. 1992, 7, 36.CrossrefGoogle Scholar

  • [10]

    R. Kuusik, A. Paat, H. Veskimäe, M. Uibu, Transformations in oil shale ash at wet conditions. Oil Shale. 2004, 21, 27.Google Scholar

  • [11]

    L. Y. Zhou, L. H. Yi, J. L. Huang, J. S. Wei, F. Z. Gong, Luminescent properties of Na2Ca4Mg2Si4O15:Tb3+ nano-sized phosphor. Luminescence 2008, 23, 112.Google Scholar

  • [12]

    L. Y. Zhou, F. Z. Gong, J. X. Shi, M. L. Gong, H. B. Liang, A novel red phosphor Na2Ca4Mg2Si4O15:Eu3+ for plasma display panels. Mater. Res. Bull. 2008, 43, 2295.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    W. Lv, Y. Jia, Q. Zhao, M. Jiao, B. Shao, W. Lü, H. You, Color tuning and energy transfer investigation in Na2Ca4Mg2Si4O15:Eu2+, Mn2+ phosphor and its potential application for UV-excited UV-WLEDs. RSC Adv. 2014, 4, 7588.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Bruker-AXS, TOPAS Version 4.2: General profile and structure analysis software for powder diffraction data, Bruker-AXS, Karlsruhe, Germany, 2009.Google Scholar

  • [15]

    S. Waltersperger, V. Olieric, C. Pradervand, W. Glettig, M. Salathe, M. R. Fuchs, A. Curtin, X. Wang, S. Ebner, E. Panepucci, T. Weinert, C. Schulze-Briese, M. Wang, PRIGo: a new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 2015, 22, 895.Web of ScienceCrossrefGoogle Scholar

  • [16]

    Rigaku Oxford Diffraction, CrysAlisPRO software system, version 1.171.38.43, 2015, Rigaku Corporation.

  • [17]

    E. Arroyabe, R. Kaindl, D. M. Többens, V. Kahlenberg, K2Ca6Si4O15 – structural and spectroscopical studies on a mixed tetrahedral – octahedral framework. J. Solid State Chem. 2009, 182, 3254.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    G. M. Sheldrick, SHELX-97 – A program for crystal structure refinement, University of Göttingen, Germany, 1997.Google Scholar

  • [19]

    A. J. C. Wilson (ed.) International Tables for Crystallography, Vol.C: Math., Phys. and Chem. Tables, Kluwer Academic Publishers, Dordrecht/Boston/London, 1995.Google Scholar

  • [20]

    A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D. 2009, 65, 148.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272.Web of ScienceCrossrefGoogle Scholar

  • [22]

    L. J. Farrugia, ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.CrossrefGoogle Scholar

  • [23]

    F. Liebau, Structural chemistry of silicates, Springer-Verlag, Berlin, 1985.Google Scholar

  • [24]

    K. Robinson, G. V. Gibbs, P. H. Ribbe, Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567.CrossrefGoogle Scholar

  • [25]

    U. Kolitsch, M. Fleck, Third update on compounds with kröhnkite-type chains: the crystal structure of wendwilsonite [Ca2Mg(AsO4)·22H2O] and the new triclinic structure types of synthetic AgSc(CrO4)·22H2O and M2Cu(Cr2O7)·22H2O (M=Rb, Cs). Eur. J. Mineral. 2006, 18, 471.CrossrefGoogle Scholar

  • [26]

    J. Rodriguez-Carjaval, FullProf.2k, Version 5.00, Jan2011-ILL JRC, Institut Laue-Langevin, Grenoble, France, 2011.Google Scholar

  • [27]

    G. de la Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato, M. I. Aroyo, Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653.Web of ScienceCrossrefGoogle Scholar

  • [28]

    V. A. Blatov, Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct. Chem. 2012, 23, 955.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    G. Bergerhoff, M. Berndt, K. Brandenburg, T. Degen, Concerning inorganic crystal structure types. Acta Crystallogr. B 1999, 55, 147.CrossrefGoogle Scholar

  • [30]

    T. Armbruster, F. Röthlisberger, Crystal growth and structures of mixed-anion silicates-germanates; Ca5[(Ge,Si)2O7][(Ge,Si)O4] and Na2Ca6[Si2O7][SiO4]2. Am. Mineral. 1990, 75, 963.Google Scholar

  • [31]

    V. Kahlenberg, M. Maier, On the existence of a high-temperature polymorph of Na2Ca6Si4O15 – implications for the phase equilibria in the system Na2O-CaO-SiO2. Mineral. Petrol. 2016, 110, 905.Web of ScienceCrossrefGoogle Scholar

  • [32]

    L. Bindi, O. G. Safonov, D. A. Zedgenizov, Merwinite-structured phases as a potential host of alkalis in the upper mantle. Contrib. Mineral. Petr. 2015, 170, 14.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-04-07

Accepted: 2017-05-22

Published Online: 2017-06-29

Published in Print: 2017-11-27


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 12, Pages 815–825, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2063.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in