Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

See all formats and pricing
More options …
Volume 232, Issue 12


Increasing data completeness in synchrotron tts-microdiffraction experiments for δ-recycling phasing of low-symmetry compounds

Jordi Rius
  • Corresponding author
  • Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oriol Vallcorba
  • ALBA Synchrotron Light Source, carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Crespi
  • Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Colombo
  • CICTERRA-Universidad Nac. Córdoba, CONICET, Vélez Sarsfield 1611, Córdoba, X50166CA, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-29 | DOI: https://doi.org/10.1515/zkri-2017-2064


Successful phasing of synchrotron through-the-substrate microdiffraction data by δ-recycling direct-methods largely depends on the number of missing intensities caused by the limited sample rotation range [J. Rius, Direct phasing from Patterson syntheses by δ recycling. Acta Cryst. A 2012, 68, 77–81]. Particularly, for the unfavorable triclinic system, dataset completeness resulting from a single series of consecutive ϕ-scans covering a total ϕ interval of ±35° is around 41%. This value is not enough for the routinary solution of a crystal structure by δ-recycling but can be increased by ~29% by applying the orthogonal χ strategy consisting of merging the information of two series of orthogonal ϕ-scans collected at the same microvolume of the polished thin section. Test calculations using simulated and experimental tts-data of the triclinic mineral axinite confirm that, with the help of the orthogonal χ strategy, crystal structures can be solved routinely. Since data in the ±35 ϕ-interval are normally accessible even for relatively thick glass-substrates (1–1.5 mm), a crystal structure can be determined from a single microvolume. For high-symmetry phases, due to the Laue symmetry redundancy, a single series of ϕ-scans normally suffices for the application of δ-recycling. However, when for experimental causes this series is incomplete, the orthogonal χ strategy also provides a simple way to increase the completeness which besides allowing solving the structure, is also beneficial for the subsequent refinement.

This article offers supplementary material which is provided at the end of the article.

Keywords: δ recycling phasing; polished thin sections; structure solution; synchrotron tts-μXRD; X-ray data completeness


  • [1]

    J. Rius, A. Labrador, A. Crespi, C. Frontera, O. Vallcorba, J. C. Melgarejo, Capabilities of through-the-substrate microdiffraction: application of Patterson-function direct methods to synchrotron data from polished thin sections. J. Synchrotron Rad. 2011, 18, 891.CrossrefGoogle Scholar

  • [2]

    J. Rius, O. Vallcorba, C. Frontera, I. Peral, A. Crespi, C. Miravitlles, Application of synchrotron through-the-substrate microdiffraction to crystals in polished thin sections. IUCrJ 2015, 2, 452.Web of ScienceGoogle Scholar

  • [3]

    J. Rius, Direct phasing from Patterson syntheses by δ recycling. Acta Cryst. A 2012, 68, 77.CrossrefGoogle Scholar

  • [4]

    J. Rius, Patterson function and δ recycling: derivation of the phasing equations. Acta Crystallogr. A 2012, 68, 399.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    G. Oszlány, A. Sütó, Ab initio structure solution by charge flipping. Acta Crystallogr. A 2004, 60, 134.CrossrefGoogle Scholar

  • [6]

    L. Palatinus, The charge-flipping algorithm in crystallography. Acta Crystallogr. B 2013, 69, 1.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    J. Rius, Application of Patterson-function direct methods to materials characterisation. IUCrJ 2014, 1, 291.CrossrefGoogle Scholar

  • [8]

    F. Fauth, I. Peral, C. Popescu, M. Knapp, The new materials science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360.CrossrefGoogle Scholar

  • [9]

    J. Rius, O. Vallcorba, C. Frontera, TTS_software: A computer software for crystal structure analysis from tts microdiffraction data. Institut de Ciència de Materials de Barcelona, CSIC, (Spain) 2016. Available at departments.icmab.es/crystallogra phy/software.Google Scholar

  • [10]

    O. Vallcorba, J. Rius, D2dplot: Plotting of 2D diffraction data, basic processing and phase ID. ALBA Synchrotron Light Source – CELLS, (Spain) 2017. Available at https://www.cells.es/en/beamlines/bl04-mspd/preparing-your-experiment.

  • [11]

    J. Rius, XLENS®: A direct methods program for solving crystal structures single-crystal data by δ recycling. Institut de Ciència de Materials de Barcelona, CSIC (Spain) 2013. Available at departments.icmab.es/crystallography/software.Google Scholar

  • [12]

    J. R. Helliwell, Single-crystal X-ray techniques. In International Tables for Crystallography Vol. C. Mathematical, physical and chemical tables, (Eds. E. Prince and T. R. Welberry) Springer, Netherlands, pp. 26–41, 2006.Google Scholar

  • [13]

    J. C. Wilson, The probability distribution of X-ray intensities. Acta Crystallogr. 1949, 2, 318.CrossrefGoogle Scholar

  • [14]

    T. Araki, P. B. Moore, Fillowite, Na2Ca(Mn,Fe) 72+ (PO4)6: its crystal structure. Am. Mineral. 1981, 66, 827.Google Scholar

  • [15]

    O. Vallcorba, L. Casas, F. Colombo, C. Frontera, J. Rius, First terrestrial occurrence of the complex phosphate chladniite: Crystal-structure refinement by synchrotron through-the-substrate microdiffraction. Eur J Mineral 2017, 29, 287.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-04-07

Accepted: 2017-05-30

Published Online: 2017-06-29

Published in Print: 2017-11-27

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 12, Pages 827–834, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2064.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Oriol Vallcorba and Jordi Rius
Journal of Applied Crystallography, 2019, Volume 52, Number 2, Page 478

Comments (0)

Please log in or register to comment.
Log in