Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

See all formats and pricing
More options …
Volume 232, Issue 4


Comparison of experimental and theoretical results for the structure and elastic properties of moganite

Hans Grimmer / Bernard Delley
Published Online: 2017-01-31 | DOI: https://doi.org/10.1515/zkri-2016-1997


Moganite, which is monoclinic at ambient temperature, undergoes a displacive transition to an orthorhombic phase at ≈570 K. Whereas the monoclinic phase may be considered as α-quartz that is Brazil twinned along {1 0 1̅ 1} at the unit-cell scale (cell-twinning), the orthorhombic phase cannot be interpreted as a Brazil cell-twin of β-quartz, in contrast to statements made in the literature. The shape of the oxygen tetrahedra in monoclinic moganite has been determined more reliably by density functional theory (DFT) calculations than by experiment: the differences between the various experimental results for the shape of the oxygen tetrahedra at ambient temperature are typically ten times larger than the differences between the DFT results. The DFT calculations suggest that the oxygen tetrahedra in moganite are very close in shape to the oxygen tetrahedra in α-quartz. Among the three DFT calculations considered, the most convincing results for the bond angles in moganite are obtained for the DMol3 code with functional PBE.

Keywords: Brazil twinning; density functional theory; elastic properties; moganite structure


  • [1]

    O. W. Flörke, J. B. Jones, H.-U. Schmincke, Z. Kristallogr. 1976, 143, 156.Google Scholar

  • [2]

    O. W. Flörke, U. Flörke, U. Giese, N. Jb. Mineral. Ab. 1984, 149, 325.Google Scholar

  • [3]

    G. Miehe, H. Graetsch, O. W. Flörke, H. Fuess, Z. Kristallogr. 1988, 182, 183.Google Scholar

  • [4]

    G. Miehe, H. Graetsch, Eur. J. Mineral. 1992, 4, 693.Google Scholar

  • [5]

    P. J. Heaney, J. E. Post, Amer. Mineral. 2001, 86, 1358.Google Scholar

  • [6]

    H. Grimmer, B. Delley, Acta Crystallogr. A 2012, 68, 359.Google Scholar

  • [7]

    H. Grimmer, B. Delley, Acta Crystallogr. A 2014, 70, 682.Google Scholar

  • [8]

    U. Hantsch, B. Winkler, C. J. Pickard, J. D. Gale, M. C. Warren, V. Milman, F. Mauri, Eur. J. Mineral. 2005, 17, 21.Google Scholar

  • [9]

    G. A. Lager, J. D. Jorgensen, F. J. Rotella, J. Appl. Phys. 1982, 53, 6751.Google Scholar

  • [10]

    W. H. Baur, Z. Kristallogr. 2009, 224, 580.Google Scholar

  • [11]

    A. R. Lang, Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution, in Crystal Growth, (Ed. H. S. Peiser) pp. 833–838. (Supplement to J. Phys. Chem. Solids). Pergamon Press, Oxford (UK), 1967.Google Scholar

  • [12]

    P. P. Phakey, Phys. Status Solidi 1969, 34, 105.Google Scholar

  • [13]

    A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748, 1994.Google Scholar

  • [14]

    B. Delley, J. Chem. Phys. 1990, 92, 508.Google Scholar

  • [15]

    B. Delley, J. Chem. Phys. 2000, 113, 7756.Google Scholar

  • [16]

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.Google Scholar

  • [17]

    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.Google Scholar

  • [18]

    I. Petrovic, P. J. Heaney, A. Navrotsky, Phys. Chem. Mineral. 1996, 23, 119..Google Scholar

  • [19]

    P. J. Heaney, D. A. McKeown, J. E. Post, Amer. Mineral. 2007, 92, 631.Google Scholar

  • [20]

    G. Miehe, O. W. Flörke, H. Graetsch, Fortschr. Mineral. 1986, 64, Beih. 1, 117.Google Scholar

  • [21]

    M. A. Carpenter, E. K. H. Salje, A. Graeme-Barber, B. Wruck, M. T. Dove, K. S. Knight, Amer. Mineral. 1998, 83, 2.Google Scholar

  • [22]

    V. V. Murashov, I. M. Svishchev, Phys. Rev. B, 1998, 57, 5639.Google Scholar

  • [23]

    J. M. Léger, J. Haines, C. Chateau, Eur. J. Mineral. 2001, 13, 351.Google Scholar

  • [24]

    J. D. Gale, A. L. Rohl, Mol. Simulat. 2003, 29, 291.Google Scholar

  • [25]

    B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Phys. Rev. Lett. 1990, 64, 1955.Google Scholar

  • [26]

    G. Sastre, J. D. Gale, Chem. Mater. 2003, 15, 1788.Google Scholar

  • [27]

    P. Heyliger, H. Ledbetter, S. Kim, J. Acoust. Soc. Am. 2003, 114, 644.Google Scholar

  • [28]

    H. Ogi, T. Ohmori, N. Nakamura, M. Hirao, J. Appl. Phys. 2006, 100, 053511.Google Scholar

About the article

Received: 2016-08-22

Accepted: 2016-12-17

Published Online: 2017-01-31

Published in Print: 2017-04-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 4, Pages 279–286, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1997.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in