Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 31, 2017

Comparison of experimental and theoretical results for the structure and elastic properties of moganite

  • Hans Grimmer EMAIL logo and Bernard Delley

Abstract

Moganite, which is monoclinic at ambient temperature, undergoes a displacive transition to an orthorhombic phase at ≈570 K. Whereas the monoclinic phase may be considered as α-quartz that is Brazil twinned along {1 0 1̅ 1} at the unit-cell scale (cell-twinning), the orthorhombic phase cannot be interpreted as a Brazil cell-twin of β-quartz, in contrast to statements made in the literature. The shape of the oxygen tetrahedra in monoclinic moganite has been determined more reliably by density functional theory (DFT) calculations than by experiment: the differences between the various experimental results for the shape of the oxygen tetrahedra at ambient temperature are typically ten times larger than the differences between the DFT results. The DFT calculations suggest that the oxygen tetrahedra in moganite are very close in shape to the oxygen tetrahedra in α-quartz. Among the three DFT calculations considered, the most convincing results for the bond angles in moganite are obtained for the DMol3 code with functional PBE.

References

[1] O. W. Flörke, J. B. Jones, H.-U. Schmincke, Z. Kristallogr.1976, 143, 156.10.1524/zkri.1976.143.jg.156Search in Google Scholar

[2] O. W. Flörke, U. Flörke, U. Giese, N. Jb. Mineral. Ab.1984, 149, 325.Search in Google Scholar

[3] G. Miehe, H. Graetsch, O. W. Flörke, H. Fuess, Z. Kristallogr. 1988, 182, 183.Search in Google Scholar

[4] G. Miehe, H. Graetsch, Eur. J. Mineral. 1992, 4, 693.10.1127/ejm/4/4/0693Search in Google Scholar

[5] P. J. Heaney, J. E. Post, Amer. Mineral. 2001, 86, 1358.10.2138/am-2001-11-1204Search in Google Scholar

[6] H. Grimmer, B. Delley, Acta Crystallogr. A2012, 68, 359.10.1107/S0108767312008756Search in Google Scholar PubMed

[7] H. Grimmer, B. Delley, Acta Crystallogr. A2014, 70, 682.10.1107/S2053273314016842Search in Google Scholar

[8] U. Hantsch, B. Winkler, C. J. Pickard, J. D. Gale, M. C. Warren, V. Milman, F. Mauri, Eur. J. Mineral. 2005, 17, 21.10.1127/0935-1221/2005/0017-0021Search in Google Scholar

[9] G. A. Lager, J. D. Jorgensen, F. J. Rotella, J. Appl. Phys. 1982, 53, 6751.10.1063/1.330062Search in Google Scholar

[10] W. H. Baur, Z. Kristallogr. 2009, 224, 580.10.1524/zkri.2009.1219Search in Google Scholar

[11] A. R. Lang, Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution, in Crystal Growth, (Ed. H. S. Peiser) pp. 833–838. (Supplement to J. Phys. Chem. Solids). Pergamon Press, Oxford (UK), 1967.Search in Google Scholar

[12] P. P. Phakey, Phys. Status Solidi1969, 34, 105.10.1002/pssb.19690340110Search in Google Scholar

[13] A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748, 1994.Search in Google Scholar

[14] B. Delley, J. Chem. Phys. 1990, 92, 508.10.1063/1.458452Search in Google Scholar

[15] B. Delley, J. Chem. Phys. 2000, 113, 7756.10.1063/1.1316015Search in Google Scholar

[16] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[17] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.10.1103/PhysRevLett.100.136406Search in Google Scholar PubMed

[18] I. Petrovic, P. J. Heaney, A. Navrotsky, Phys. Chem. Mineral. 1996, 23, 119..10.1007/BF00202307Search in Google Scholar

[19] P. J. Heaney, D. A. McKeown, J. E. Post, Amer. Mineral. 2007, 92, 631.10.2138/am.2007.2184Search in Google Scholar

[20] G. Miehe, O. W. Flörke, H. Graetsch, Fortschr. Mineral. 1986, 64, Beih. 1, 117.Search in Google Scholar

[21] M. A. Carpenter, E. K. H. Salje, A. Graeme-Barber, B. Wruck, M. T. Dove, K. S. Knight, Amer. Mineral. 1998, 83, 2.10.2138/am-1998-1-201Search in Google Scholar

[22] V. V. Murashov, I. M. Svishchev, Phys. Rev. B, 1998, 57, 5639.10.1103/PhysRevB.57.5639Search in Google Scholar

[23] J. M. Léger, J. Haines, C. Chateau, Eur. J. Mineral. 2001, 13, 351.10.1127/0935-1221/01/0013-0351Search in Google Scholar

[24] J. D. Gale, A. L. Rohl, Mol. Simulat. 2003, 29, 291.10.1080/0892702031000104887Search in Google Scholar

[25] B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Phys. Rev. Lett. 1990, 64, 1955.10.1103/PhysRevLett.64.1955Search in Google Scholar PubMed

[26] G. Sastre, J. D. Gale, Chem. Mater. 2003, 15, 1788.10.1021/cm021262ySearch in Google Scholar

[27] P. Heyliger, H. Ledbetter, S. Kim, J. Acoust. Soc. Am. 2003, 114, 644.10.1121/1.1593063Search in Google Scholar PubMed

[28] H. Ogi, T. Ohmori, N. Nakamura, M. Hirao, J. Appl. Phys. 2006, 100, 053511.10.1063/1.2335684Search in Google Scholar

Received: 2016-8-22
Accepted: 2016-12-17
Published Online: 2017-1-31
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1997/html
Scroll to top button