Jump to ContentJump to Main Navigation
Show Summary Details

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR increased in 2015: 2.560
Rank 8 out of 26 in category Cristallography in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198
Impact per Publication (IPP) 2015: 1.834

Online
ISSN
2196-7105
See all formats and pricing
Volume 232, Issue 4 (Apr 2017)

Issues

Comparison of experimental and theoretical results for the structure and elastic properties of moganite

Hans Grimmer
  • Corresponding author
  • Research with Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
  • Email:
/ Bernard Delley
  • Research with Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Published Online: 2017-01-31 | DOI: https://doi.org/10.1515/zkri-2016-1997

Abstract

Moganite, which is monoclinic at ambient temperature, undergoes a displacive transition to an orthorhombic phase at ≈570 K. Whereas the monoclinic phase may be considered as α-quartz that is Brazil twinned along {1 0 1̅ 1} at the unit-cell scale (cell-twinning), the orthorhombic phase cannot be interpreted as a Brazil cell-twin of β-quartz, in contrast to statements made in the literature. The shape of the oxygen tetrahedra in monoclinic moganite has been determined more reliably by density functional theory (DFT) calculations than by experiment: the differences between the various experimental results for the shape of the oxygen tetrahedra at ambient temperature are typically ten times larger than the differences between the DFT results. The DFT calculations suggest that the oxygen tetrahedra in moganite are very close in shape to the oxygen tetrahedra in α-quartz. Among the three DFT calculations considered, the most convincing results for the bond angles in moganite are obtained for the DMol3 code with functional PBE.

Keywords: Brazil twinning; density functional theory; elastic properties; moganite structure

References

  • [1]

    O. W. Flörke, J. B. Jones, H.-U. Schmincke, Z. Kristallogr. 1976, 143, 156.

  • [2]

    O. W. Flörke, U. Flörke, U. Giese, N. Jb. Mineral. Ab. 1984, 149, 325.

  • [3]

    G. Miehe, H. Graetsch, O. W. Flörke, H. Fuess, Z. Kristallogr. 1988, 182, 183.

  • [4]

    G. Miehe, H. Graetsch, Eur. J. Mineral. 1992, 4, 693.

  • [5]

    P. J. Heaney, J. E. Post, Amer. Mineral. 2001, 86, 1358.

  • [6]

    H. Grimmer, B. Delley, Acta Crystallogr. A 2012, 68, 359.

  • [7]

    H. Grimmer, B. Delley, Acta Crystallogr. A 2014, 70, 682.

  • [8]

    U. Hantsch, B. Winkler, C. J. Pickard, J. D. Gale, M. C. Warren, V. Milman, F. Mauri, Eur. J. Mineral. 2005, 17, 21.

  • [9]

    G. A. Lager, J. D. Jorgensen, F. J. Rotella, J. Appl. Phys. 1982, 53, 6751.

  • [10]

    W. H. Baur, Z. Kristallogr. 2009, 224, 580.

  • [11]

    A. R. Lang, Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution, in Crystal Growth, (Ed. H. S. Peiser) pp. 833–838. (Supplement to J. Phys. Chem. Solids). Pergamon Press, Oxford (UK), 1967.

  • [12]

    P. P. Phakey, Phys. Status Solidi 1969, 34, 105.

  • [13]

    A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748, 1994.

  • [14]

    B. Delley, J. Chem. Phys. 1990, 92, 508.

  • [15]

    B. Delley, J. Chem. Phys. 2000, 113, 7756.

  • [16]

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

  • [17]

    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.

  • [18]

    I. Petrovic, P. J. Heaney, A. Navrotsky, Phys. Chem. Mineral. 1996, 23, 119..

  • [19]

    P. J. Heaney, D. A. McKeown, J. E. Post, Amer. Mineral. 2007, 92, 631.

  • [20]

    G. Miehe, O. W. Flörke, H. Graetsch, Fortschr. Mineral. 1986, 64, Beih. 1, 117.

  • [21]

    M. A. Carpenter, E. K. H. Salje, A. Graeme-Barber, B. Wruck, M. T. Dove, K. S. Knight, Amer. Mineral. 1998, 83, 2.

  • [22]

    V. V. Murashov, I. M. Svishchev, Phys. Rev. B, 1998, 57, 5639.

  • [23]

    J. M. Léger, J. Haines, C. Chateau, Eur. J. Mineral. 2001, 13, 351.

  • [24]

    J. D. Gale, A. L. Rohl, Mol. Simulat. 2003, 29, 291.

  • [25]

    B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Phys. Rev. Lett. 1990, 64, 1955.

  • [26]

    G. Sastre, J. D. Gale, Chem. Mater. 2003, 15, 1788.

  • [27]

    P. Heyliger, H. Ledbetter, S. Kim, J. Acoust. Soc. Am. 2003, 114, 644.

  • [28]

    H. Ogi, T. Ohmori, N. Nakamura, M. Hirao, J. Appl. Phys. 2006, 100, 053511.

About the article

Received: 2016-08-22

Accepted: 2016-12-17

Published Online: 2017-01-31

Published in Print: 2017-04-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1997. Export Citation

Comments (0)

Please log in or register to comment.
Log in