Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 4


Competition between intermolecular hydrogen bonding and stacking in the crystals of 4-Hydroxy-N-(pyridin-2-yl)-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides

Svitlana V. Shishkina
  • Corresponding author
  • SSI “Institute for Single Crystals” National Academy of Science of Ukraine, 60 Nauki ave., Kharkiv, 61001, Ukraine
  • Department of Inorganic Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor V. Ukrainets
  • Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska str., Kharkiv 61002, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidiya A. Petrushova
  • Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska str., Kharkiv 61002, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-25 | DOI: https://doi.org/10.1515/zkri-2016-2011


The traditional crystal packing study based on the analysis of geometrical characteristics of intermolecular interactions is found to be not informative enough. The application of quantum-chemical calculations for the evaluation of pairwise interaction energies between molecules allows to get much more information about supramolecular architecture. The staking interactions between π-systems of neighboring molecules form the building unit of the crystal packing in the absence of any strong interactions as well as in the presence of the N–H…O classical hydrogen bond. Unexpectedly the hydrogen bonds play the secondary role in the crystal packing formation as compared to stacking. Analysis of the total interaction energy of the basic molecule with all the molecules of its first coordination sphere and the pairwise interaction energies allows to evaluate the extent of crystal isotropy from point of view of interaction energies.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal packing; hydrogen bonding; intermolecular interactions; stacking


  • [1]

    J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.CrossrefGoogle Scholar

  • [2]

    J. W. Steed, J. L. Atwood, Supramolecular chemistry, Second edition, John Wiley and Sons, Chichester, UK, 2009.Google Scholar

  • [3]

    D. Braga, F. Grepioni, A. G. Orpen, Crystal Engineering: from molecules and crystals to materials, NATO Science Series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publisher, Amsterdam, 1999, 538.Google Scholar

  • [4]

    H. G. Brittain, Polymorphism in pharmaceutical solids, Second Ed, Informa, New York, London, 2009.Google Scholar

  • [5]

    M. C. Etter, Acc. Chem. Res. 1990, 23, 120.Google Scholar

  • [6]

    M. E. Etter, J. Phys. Chem. 1991, 95, 4601.Google Scholar

  • [7]

    G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.Google Scholar

  • [8]

    G. R. Desiraju, Nature 2001, 412, 397.Google Scholar

  • [9]

    G. R. Desiraju, Crystal Engineering: The Disign of Organic Solids, Elsevier Science Publishers B.V., Amsterdam, 1989.Google Scholar

  • [10]

    G. R. Desiraju, Acc. Chem. Res. 2002, 35, 565.Google Scholar

  • [11]

    T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 49.Google Scholar

  • [12]

    J. D. Dunitz, A. Gavezzotti, Chem. Soc. Rev. 2009, 38, 2622.Google Scholar

  • [13]

    M. Rubes, O. Bludsky, Phys.Chem.Chem.Phys. 2008, 10, 2611.Google Scholar

  • [14]

    E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170.Google Scholar

  • [15]

    R. F. W. Bader, Chem. Rev. 1991, 91, 893.Google Scholar

  • [16]

    M. A. Spackman, Cryst. Growth Des. 2015, 15, 5624.Google Scholar

  • [17]

    O. A. Zhikol, O. V. Shishkin, K. A. Lyssenko, J. Leszczynski, J. Chem. Phys. 2005, 122, 1.Google Scholar

  • [18]

    O. A. Zhikol, O. V. Shishkin, Int. J. Quantum Chem. 2012, 112, 3008.Google Scholar

  • [19]

    J. D. Dunitz, A. Gavezzotti, Acc. Chem. Res. 1999, 32, 677.Google Scholar

  • [20]

    A. Gavezzotti, CrystEngComm 2013, 15, 4027.Google Scholar

  • [21]

    J. D. Dunitz, A. Gavezzotti, Cryst. Growth Des. 2005, 5, 2180.Google Scholar

  • [22]

    M. A. Spackman, J. J. McKinnon, CrystEngComm 2002, 4, 378.Google Scholar

  • [23]

    A. Gavezzotti, J. Phys. Chem. B 2002, 106, 4145.Google Scholar

  • [24]

    A. Gavezzotti, J. Phys. Chem. B 2003, 107, 2344.Google Scholar

  • [25]

    A. Gavezzotti, New J. Chem. 2011, 35, 1360.Google Scholar

  • [26]

    J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 4911.Google Scholar

  • [27]

    O. V. Shishkin, R. I. Zubatyuk, A. V. Maleev, R. Boese, Struct. Chem. 2014, 25, 1547.Google Scholar

  • [28]

    O. V. Shishkin, V. V. Dyakonenko, A. V. Maleev, CrystEngComm 2012, 14, 1795.Google Scholar

  • [29]

    O. V. Shishkin, V. V. Dyakonenko, A. V. Maleev, D. Schollmeyer, M. O. Vysotsky, CrystEngComm 2011, 13, 800.Google Scholar

  • [30]

    O. V. Shishkin, R. I. Zubatyuk, S. V. Shishkina, V. V. Dyakonenko, V. V. Medviediev, Phys. Chem. Chem. Phys. 2014, 16, 6773.Google Scholar

  • [31]

    I. V. Ukrainets, L. A. Petrushova, S. P. Dzyubenko, L. Yangyang, Chem. Heterocycl. Compd. 2014, 50, 564.Google Scholar

  • [32]

    I. V. Ukrainets, O. V. Gorokhova, L. V. Sidorenko, J. Org. Pharm. Chem. 2015, 13, 6.Google Scholar

  • [33]

    G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 64, 112.Google Scholar

  • [34]

    V. V. Dyakonenko, A. V. Maleev, A. I. Zbruyev, V. A. Chebanov, S. M. Desenko, O. V. Shishkin, CrystEngComm 2010, 12, 1816.Google Scholar

  • [35]

    C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriquez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.Google Scholar

  • [36]

    S. Grimme, J. Comput. Chem. 2006, 27, 1787.Google Scholar

  • [37]

    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.Google Scholar

  • [38]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 15.Google Scholar

  • [39]

    S. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.Google Scholar

  • [40]

    F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.Google Scholar

  • [41]

    P. Coppens, Acta Cryst. B. 1972, 28, 1638.Google Scholar

  • [42]

    G. R. Desiraju, Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Wiley, Chichester, 2003.Google Scholar

  • [43]

    H.-B. Burgi, J. D. Dunitz, Structure correlation, VCH, Weinheim, 1994.Google Scholar

About the article

Received: 2016-10-13

Accepted: 2016-12-02

Published Online: 2017-01-25

Published in Print: 2017-04-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 4, Pages 307–316, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2011.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Svitlana V. Shishkina, Irina S. Konovalova, Oleg V. Shishkin, and Alexander N. Boyko
CrystEngComm, 2017

Comments (0)

Please log in or register to comment.
Log in