Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 4

Issues

Supramolecular association in (μ2-pyrazine)-tetrakis(N,N-bis(2-hydroxyethyl)dithiocarbamato)dizinc(II) and its di-dioxane solvate

Mukesh M. Jotani
  • Corresponding author
  • Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Poplaukhin / Hadi D. Arman
  • Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward R.T. Tiekink
  • Corresponding author
  • Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-07 | DOI: https://doi.org/10.1515/zkri-2016-2014

Abstract

The crystal and molecular structures of {Zn[S2CN(CH2CH2OH)2]2}2(pyrazine), (1), and its di-dioxane solvate, (2), are described. In each of these, the centrosymmetric, binuclear molecule features a five-coordinated, highly distorted square-pyramidal geometry based on a NS4 donor set. The three-dimensional architectures in 1 and 2 are sustained by extensive networks of distinctive hydroxyl-O–H···O(hydroxyl) hydrogen bonding. The topology of the lattices are very different with that of 2 having a more regular appearance. The dioxane molecules reside in channels defined by the host molecules in 2 but, do not make many significant interactions with the host. The fact that 1 exhibits a significantly greater packing efficiency and a higher density suggests 1 is more stable than 2. The retention of dioxane in crystals of 2 probably reflects its intimate involvement in nucleation and high boiling point, meaning it is retained during crystallisation. Hirshfeld surface analyses were conducted and confirm the importance of the hydroxyl-O–H···O(hydroxyl) hydrogen bonding but, also reveal the presence of other interactions, most notably C–H···π(chelate) interactions.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure analysis; Hirshfeld surface; hydrogen bonding; X-ray diffraction; zinc dithiocarbamate

References

  • [1]

    P. J. Heard, Prog. Inorg. Chem. 2005, 53, 1.Google Scholar

  • [2]

    G. Hogarth, Prog. Inorg. Chem. 2005, 53, 71.Google Scholar

  • [3]

    E. R. T. Tiekink, I. Haiduc, Prog. Inorg. Chem. 2005, 54, 127.Google Scholar

  • [4]

    I. Haiduc, D. B. Sowerby, Polyhedron 1996, 15, 2469.Google Scholar

  • [5]

    N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15, 1.Google Scholar

  • [6]

    I. Haiduc, Secondary Bonding in J. L. Atwood, J. Steed, (Eds), Encyclopedia of Supramolecular Chemistry, Marcel Dekker Inc., New York, 2004, pp. 1215.Google Scholar

  • [7]

    E. R. T. Tiekink, CrystEngComm. 2003, 5, 101.Google Scholar

  • [8]

    V. Singh, R. Chauhan, A. Kumar, L. Bahadur, N. Singh, Dalton Trans. 2010, 39, 9779.Google Scholar

  • [9]

    V. Singh, A. Kumar, R. Prasad, G. Rajput, M. G. B. Drew, N. Singh, CrystEngComm. 2011, 13, 6817.Google Scholar

  • [10]

    R. A. Howie, G. M. de Lima, D. C. Menezes, J. L. Wardell, S. M. S. V. Wardell, D. J. Young, E. R. T. Tiekink, CrystEngComm. 2008, 10, 1626.Google Scholar

  • [11]

    Y. S. Tan, S. N. A. Halim, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 55.Google Scholar

  • [12]

    H. D. Arman, P. Poplaukhin, E. R. T. Tiekink, Acta Crystallogr. E 2016, 72, 1234.Google Scholar

  • [13]

    M. M. Jotani, Y. S. Tan, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 403.Google Scholar

  • [14]

    S. Thirumaran, V. Venkatachalam, A. Manohar, K. Ramalingam, G. Bocelli, A. Cantoni, J. Coord. Chem. 1998, 44, 281.Google Scholar

  • [15]

    R. E. Benson, C. A. Ellis, C. E. Lewis, E. R. T. Tiekink, CrystEngComm 2007, 9, 930.Google Scholar

  • [16]

    P. Poplaukhin, H. D. Arman, E. R. T. Tiekink, Z. Kristallogr. 2012, 227, 363.Google Scholar

  • [17]

    P. Poplaukhin, E. R. T. Tiekink, CrystEngComm 2010, 12, 1302.Google Scholar

  • [18]

    N. S. Jamaludin, S. N. A. Halim, C.-H. Khoo, B.-J. Chen, T.-H. See, J.-H. Sim, Y.-K. Cheah, H.-L. Seng, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 341.Google Scholar

  • [19]

    Y. S. Tan, K. K. Ooi, K. P. Ang, A. Md Akim, Y.-K. Cheah, S. N. A. Halim, H.-L. Seng, E. R. T. Tiekink, J. Inorg. Biochem. 2015, 150, 48.Google Scholar

  • [20]

    CrystalClear. User Manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX, 2005.Google Scholar

  • [21]

    Higashi, T.: ABSCOR. Rigaku Corporation, Tokyo, Japan, 1995.Google Scholar

  • [22]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.Google Scholar

  • [23]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.Google Scholar

  • [24]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.Google Scholar

  • [25]

    A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.Google Scholar

  • [26]

    K. Brandenburg, DIAMOND. Crystal Impact GbR, Bonn, Germany, 2006.Google Scholar

  • [27]

    J. Gans, D. Shalloway, J. Molec. Graphics Model. 2001, 19, 557.Google Scholar

  • [28]

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012.Google Scholar

  • [29]

    J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. B 2004, 60, 627.Google Scholar

  • [30]

    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.Google Scholar

  • [31]

    Y. S. Tan, S. N. A. Halim, K. C. Molloy, A. L. Sudlow, A. Otero-de-la-Roza, E. R. T. Tiekink, CrystEngComm. 2016, 18, 1105.Google Scholar

  • [32]

    V. Jayant, D. Das, Cryst. Growth Des. 2016, 16, 4183.Google Scholar

  • [33]

    CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 81st edn, 2000.Google Scholar

  • [34]

    J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.Google Scholar

About the article

Received: 2016-10-12

Accepted: 2016-11-17

Published Online: 2017-01-07

Published in Print: 2017-04-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 4, Pages 287–298, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2014.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in