Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 4 (Apr 2017)


Supramolecular association in (μ2-pyrazine)-tetrakis(N,N-bis(2-hydroxyethyl)dithiocarbamato)dizinc(II) and its di-dioxane solvate

Mukesh M. Jotani
  • Corresponding author
  • Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Poplaukhin / Hadi D. Arman
  • Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward R.T. Tiekink
  • Corresponding author
  • Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-07 | DOI: https://doi.org/10.1515/zkri-2016-2014


The crystal and molecular structures of {Zn[S2CN(CH2CH2OH)2]2}2(pyrazine), (1), and its di-dioxane solvate, (2), are described. In each of these, the centrosymmetric, binuclear molecule features a five-coordinated, highly distorted square-pyramidal geometry based on a NS4 donor set. The three-dimensional architectures in 1 and 2 are sustained by extensive networks of distinctive hydroxyl-O–H···O(hydroxyl) hydrogen bonding. The topology of the lattices are very different with that of 2 having a more regular appearance. The dioxane molecules reside in channels defined by the host molecules in 2 but, do not make many significant interactions with the host. The fact that 1 exhibits a significantly greater packing efficiency and a higher density suggests 1 is more stable than 2. The retention of dioxane in crystals of 2 probably reflects its intimate involvement in nucleation and high boiling point, meaning it is retained during crystallisation. Hirshfeld surface analyses were conducted and confirm the importance of the hydroxyl-O–H···O(hydroxyl) hydrogen bonding but, also reveal the presence of other interactions, most notably C–H···π(chelate) interactions.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure analysis; Hirshfeld surface; hydrogen bonding; X-ray diffraction; zinc dithiocarbamate


  • [1]

    P. J. Heard, Prog. Inorg. Chem. 2005, 53, 1.Google Scholar

  • [2]

    G. Hogarth, Prog. Inorg. Chem. 2005, 53, 71.Google Scholar

  • [3]

    E. R. T. Tiekink, I. Haiduc, Prog. Inorg. Chem. 2005, 54, 127.Google Scholar

  • [4]

    I. Haiduc, D. B. Sowerby, Polyhedron 1996, 15, 2469.Google Scholar

  • [5]

    N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15, 1.Google Scholar

  • [6]

    I. Haiduc, Secondary Bonding in J. L. Atwood, J. Steed, (Eds), Encyclopedia of Supramolecular Chemistry, Marcel Dekker Inc., New York, 2004, pp. 1215.Google Scholar

  • [7]

    E. R. T. Tiekink, CrystEngComm. 2003, 5, 101.Google Scholar

  • [8]

    V. Singh, R. Chauhan, A. Kumar, L. Bahadur, N. Singh, Dalton Trans. 2010, 39, 9779.Google Scholar

  • [9]

    V. Singh, A. Kumar, R. Prasad, G. Rajput, M. G. B. Drew, N. Singh, CrystEngComm. 2011, 13, 6817.Google Scholar

  • [10]

    R. A. Howie, G. M. de Lima, D. C. Menezes, J. L. Wardell, S. M. S. V. Wardell, D. J. Young, E. R. T. Tiekink, CrystEngComm. 2008, 10, 1626.Google Scholar

  • [11]

    Y. S. Tan, S. N. A. Halim, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 55.Google Scholar

  • [12]

    H. D. Arman, P. Poplaukhin, E. R. T. Tiekink, Acta Crystallogr. E 2016, 72, 1234.Google Scholar

  • [13]

    M. M. Jotani, Y. S. Tan, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 403.Google Scholar

  • [14]

    S. Thirumaran, V. Venkatachalam, A. Manohar, K. Ramalingam, G. Bocelli, A. Cantoni, J. Coord. Chem. 1998, 44, 281.Google Scholar

  • [15]

    R. E. Benson, C. A. Ellis, C. E. Lewis, E. R. T. Tiekink, CrystEngComm 2007, 9, 930.Google Scholar

  • [16]

    P. Poplaukhin, H. D. Arman, E. R. T. Tiekink, Z. Kristallogr. 2012, 227, 363.Google Scholar

  • [17]

    P. Poplaukhin, E. R. T. Tiekink, CrystEngComm 2010, 12, 1302.Google Scholar

  • [18]

    N. S. Jamaludin, S. N. A. Halim, C.-H. Khoo, B.-J. Chen, T.-H. See, J.-H. Sim, Y.-K. Cheah, H.-L. Seng, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 341.Google Scholar

  • [19]

    Y. S. Tan, K. K. Ooi, K. P. Ang, A. Md Akim, Y.-K. Cheah, S. N. A. Halim, H.-L. Seng, E. R. T. Tiekink, J. Inorg. Biochem. 2015, 150, 48.Google Scholar

  • [20]

    CrystalClear. User Manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX, 2005.Google Scholar

  • [21]

    Higashi, T.: ABSCOR. Rigaku Corporation, Tokyo, Japan, 1995.Google Scholar

  • [22]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.Google Scholar

  • [23]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.Google Scholar

  • [24]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.Google Scholar

  • [25]

    A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.Google Scholar

  • [26]

    K. Brandenburg, DIAMOND. Crystal Impact GbR, Bonn, Germany, 2006.Google Scholar

  • [27]

    J. Gans, D. Shalloway, J. Molec. Graphics Model. 2001, 19, 557.Google Scholar

  • [28]

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012.Google Scholar

  • [29]

    J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. B 2004, 60, 627.Google Scholar

  • [30]

    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.Google Scholar

  • [31]

    Y. S. Tan, S. N. A. Halim, K. C. Molloy, A. L. Sudlow, A. Otero-de-la-Roza, E. R. T. Tiekink, CrystEngComm. 2016, 18, 1105.Google Scholar

  • [32]

    V. Jayant, D. Das, Cryst. Growth Des. 2016, 16, 4183.Google Scholar

  • [33]

    CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 81st edn, 2000.Google Scholar

  • [34]

    J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.Google Scholar

About the article

Received: 2016-10-12

Accepted: 2016-11-17

Published Online: 2017-01-07

Published in Print: 2017-04-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2014.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in