Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

See all formats and pricing
More options …
Volume 232, Issue 4


Structural studies of (E)-2-(benzylidene)- 2,3-dihydro-1H-inden-1-one derivatives: crystal structures and Hirshfeld surface analysis

Thomas C. Baddeley / Ligia R. Gomes
  • FP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal
  • REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John N. Low / Janet M.S. Skakle / Alan B. Turner / James L. Wardell
  • Corresponding author
  • Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
  • Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graeme J.R. Watson
Published Online: 2017-03-07 | DOI: https://doi.org/10.1515/zkri-2016-2020


Crystal structures are reported of (E)-2-(4-hydroxybenzylidene)-2,3-dihydro-1H-inden-1-one, 1, (E)-2-(4-dimethylaminobenzylidene)-2,3- dihydro-1H-inden-1-one, 2, (E)-2-(4-cyanobenzylidene)-2,3-dihydro-1H-inden-1-one, 3, and monoclinic-(E)- 2-(3-nitrobenzylidene)-2,3-dihydro-1H-inden-1-one, monoclinic-4, all from data collected at 100 K and (E)-2-(4-hydroxy-3,5-dimethylbenzylidene)-2,3-dihydro-1H-indan-1-one, 6, from data collected at 299 K. An earlier triclinic form of 4 has been reported. Also reported herein are the Hirshfeld suface calculations for these five compounds, as well as that of 2-(4-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one, 5,whose crystal structure has been previously reported. The three rings in each of the compounds, 1–4 and 6, are essentially planar, including the five-membered ring containing a formally hydridized sp3 atom. The molecules exhibit slight deviations from overall planarity as shown by the dihedral angles, >8.15(6)° between the 2,3-dihydro-1H-inden-1-one fragments and the phenyl fragments. The main intermolecular interactions in compounds 1 and are classical O–H···O1(carbonyl) hydrogen bonds. The carbonyl oxygen atom in compounds 1–4 are involved in non-classical C–H···O intermolecular hydrogen bonds. Intermolecular C–H---π interactions are present in 2, 3 and 6, while π···π are present in 2–4 and 6. As noted in the structure determinations of these compounds, different π···π motifs are possible. The Hirshfeld surface calculations, while generally concurring with the intermolecular interactions indicated by PLATON analyses, also reveal significant interactions, which fall below the PLATON radar.

This article offers supplementary material which is provided at the end of the article.

Keywords: 2-(arylidene)-2,3-dihydro-1H-inden-1-one compounds; Hirshfeld surface calculations; intermolecular interactions; X-ray crystallography


  • [1]

    D. N. Dhar, The chemistry of chalcones and related compounds, Wiley, New York, 1981.Google Scholar

  • [2]

    J. R. Dimmock, N. M. Kandepu, A. J. Nazarali, T. P. Kowalchuk, N. Motaganahalli, J. W. Quail, P. Mykytiuk, G. F. Audette, L. Prasad, P. Perjési, T. M. Allen, C. L. Santos, J. Szydlowski, E. De Clercq, J. Balzarini, Conformational and quantitative structure–activity relationship study of cytotoxic 2-arylidenebenzocycloalkanones. J. Med. Chem. 1999, 42, 1358.Google Scholar

  • [3]

    J. R. Dimmock, G. A. Zello, E. O. Oloo, J. W. Quail, H.-B. Kraatz, P. Perjési, F. Aradi, K. Takács-Novák, T. M. Allen, C. L. Santos, J. Balzarini, E. De Clercq, J. P. Stables, J. Med. Chem. 2002, 45, 3103.Google Scholar

  • [4]

    K. Monostory, V. Tamási, L. Vereczkey, P. Perjési, A study on CYP1A inhibitory action of E-2-(4′-methoxybenzylidene)-1-benzosuberone and some related chalcones and cyclic chalcone analogues. Toxicology 2003, 184, 203.Google Scholar

  • [5]

    D. Drutovic, M. Chripkova, M. Pilatova, P. Kruzliak, P. Perjési, M. Sarissky, M. Lupi, G. Damia, M. Broggini, J. Mojzis, Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumour. Biol. 2014, 35, 9967.Google Scholar

  • [6]

    Y. Gautam, S. Dwivedi, A. Srivastava, Hamidullah, A. Singh, D. Chanda, J. Singh, S. Rai, R. Konwar, A. S. Negi, 2-(3′,4′-Dimethoxybenzylidene)tetralone induces anti-breast cancer activity through microtubule stabilization and activation of reactive oxygen species. RSC Adv. 2016, 6, 33369.Google Scholar

  • [7]

    S. W. Yee, L. Jarno, M. S. Gomaa, C. Elford, L.-L. Ooi, M. P. Coogan, R. McClelland, R. I. Nicholson, B. A. J. Evans, A. Brancale, C. Simons, Novel tetralone-derived retinoic acid metabolism blocking agents: synthesis and in vitro evaluation with liver microsomal and MCF-7 CYP26A1 cell assays. J. Med. Chem. 2005, 48, 7123.Google Scholar

  • [8]

    R. Bansal, G. Narang, C. Zimmer, R. W. Hartmann, Synthesis of some imidazolyl-substituted 2-benzylidene indanone derivatives as potent aromatase inhibitors for breast cancer therapy. Med. Chem. Res. 2011, 20, 661.Google Scholar

  • [9]

    A. Singh, K. Fatima, A. Singh, A. Behl, M. J. Mintoo, M. Hasanain. R. Ashraf, S. Luqman, K. Shanker, D. M. Mondhe, J. Sarkar, D. Chanda, A. S. Negi, Anticancer activity and toxicity profiles of 2-benzylidene indanone lead molecule. Eur. J. Pharm. Sci. 2015, 76, 57.Google Scholar

  • [10]

    V. Gundogdu-Karaburun, A. Cagri Karaburun, S. Demirayak, I. Kayagil, L. Yurttas, Synthesis and Anticancer Activity of Some 2-[3/4-(2-Substituted phenyl-2- oxoethoxy)benzylidene]-6-substituted-2,3-dihydro-1H-inden-1-one derivatives, Lett Drug Des. Disc. 2014, 11, 578.Google Scholar

  • [11]

    A. P. Prakasham, A. K. Saxena, S. Luqman, D. Chanda, T. Kaur, A. Gupta, D. K. Yadav, C. S. Chanotiya, K. Shanker, F. Khan, A. S. Negi, Synthesis and anticancer activity of 2-benzylidene indanones through inhibiting tubulin polymerization. Bioorg. Med. Chem. 2012, 20, 3049.Google Scholar

  • [12]

    D. Chanda, S. Bhushan, S. K. Guru, K. Shanker, Z. A. Wani, B. A. Rah, S. Luqman, D. M. Mondhe, A. Pal, A. S. Negi, Anticancer activity, toxicity and pharmacokinetic profile of an indanone derivative. Eur. J. Pharm. Sci. 2012, 47, 988.Google Scholar

  • [13]

    A. S. Negi, A. P. Prakasham, A. K. Saxena, S. Luqman, D. Chanda, T. Kaur, A. Gupta, Anticancer and tubulin polymerisation activity of benzylidene Indanones and the process of preparing the same. US Patent Granted no. US8633242 B2, January 21, 2014.Google Scholar

  • [14]

    P. Perjési, K. Takács-Novák, Z. Rozmer, P. Sohár, R. Bozak, T. Allen, Comparison of structure, logP and P388 cytotoxicity of some phenyl and ferrocenyl cyclic chalcone analogues. Application of RP-TLC for logP determination of the ferrocenyl analogues. Cent. Eur. J. Chem. 2012, 10, 1500.Google Scholar

  • [15]

    T. M. Al-Nakib, P. Perjési, R. Varghese, M. J. Meegan, Benzylideneindanones and benzylidenebenzosuberones: relationship between structure, antimycotic activity and acute toxicity. Med. Princ. Pract. 1997, 6, 14.Google Scholar

  • [16]

    G. J. R. Watson, A. B. Turner, S. Allen, Organic materials for non-linearOPtics III. Special Publication-RSC 1993, 137, 112.Google Scholar

  • [17]

    N. L. Silver, D. W. Boykin Jr., Substituent effects on the carbonyl stretching frequency of chalcones. J. Org. Chem. 1970, 35, 759.Google Scholar

  • [18]

    A. Perjessy, D. W. Boykin Jr., L. Fisera, A. Krutosiková, J. Kovac, Carbonyl stretching frequencies and transmission of electronic effects in 1-phenyl-3-(5-aryl-2-furyl)propenones and 1-phenyl-3-(5-aryl-2-thienyl)propenones. J. Org. Chem. 1973, 38, 1807.Google Scholar

  • [19]

    E. Sol’aniova, S. Toma, S. Gronowitz, Investigation of substituent effects of chalcones by 13C n.m.r. spectroscopy. Org. Magn. Res. 1976, 8, 439.Google Scholar

  • [20]

    P. Perjési, A. Perjéssy, E. Kolehmainen, E. Ösz, M. Samaliková, J. Linnanto, E. Virtanen, E-2-Benzylidenebenzocycloalkanones III. Studies on transmission of substituent effects on IR carbonyl stretching frequencies and 13C NMR chemical shifts of E-2-(X-benzylidene)-1-indanones. Comparison with the IR data of E-2-(X-benzylidene)-1-indanones, -tetralones, and –benzosuberones. J. Mol. Struct. 2004, 697, 41.Google Scholar

  • [21]

    P. Perjési, J. Linnanto, E. Kolehmainen, E. E. Ösz, E. Virtanen, E-2-Benzylidenebenzo-cycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones. J. Mol. Struct. 2005, 740, 81.Google Scholar

  • [22]

    J. Harada, M. Harakawa, S. Sugiyama, K. Ogawa, Single crystal cistrans-photoisomerizations of 2-(9-anthrylmethylene)-1-indanones. CrystEngComm. 2009, 11, 1235.Google Scholar

  • [23]

    P. Perjési, (E)-2-Benzylidenebenzocyclanones: part XIII – (– (E)/(Z)-Isomerization of some cyclic chalcone analogues. Effect of ring size on lipophilicity of geometric isomers. Monatsh Chem. 2015, 146, 1275.Google Scholar

  • [24]

    M. A. Ali, R. Ismail, T. S. Choon, W.-S. Loh, H. K. Fun, 2-[(E)-4-(Diethylamino)benzylidene]indan-1-one. Acta Crystallogr. 2011, E67, o1983.Google Scholar

  • [25]

    I. A.Guzei, H.Schenck, CCDC 863399: Experimental Crystal Structure Determination, 2012, DOI: 10.5517/ccxzflw: Deposited on: 17/1/2012.Google Scholar

  • [26]

    A. M. Asiri, H. M. Faidallah, K. F. Al-Nemari, S. W. Ng, E. R. T. Tiekink, (2E)-2-(4-Methoxybenzylidene)-2,3-dihydro-1H-inden-1-one. Acta Crystallogr. 2012, E68, o815.Google Scholar

  • [27]

    G. Narang, D. P. Jindal, B. Jit, R. Bansal, Formation of dimers of some 2-substituted indan-1-one derivatives. Helv. Chim. Acta 2006, 89, 258.Google Scholar

  • [28]

    V. Tomečková, J. Guzy, J. Kušnír, K. Fodor, M. Mareková, Z. Chavková, P. Perjési, Comparison of the effects of selected chalcones, dihydrochalcones and some cyclic flavonoids on mitochondrial outer membrane determined by fluorescence spectroscopy. J. Biochem. Biophys. Meth 2006, 69, 143.Google Scholar

  • [29]

    A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148.Google Scholar

  • [30]

    J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.Google Scholar

  • [31]

    H. M. Sim, K. Y. Loh, W. K. Yeo, C. Y. Lee, M. L. Go, Aurones as modulators of ABCG2 and ABCB1: synthesis and structure–activity relationships. ChemMedChem. 2011, 6, 713.Google Scholar

  • [32]

    A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, B. Kahr, Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: pentamorphic 1,8-dihydroxyanthraquinone. Cryst. Growth Des. 2008, 8, 4517.Google Scholar

  • [33]

    S. K. Wolff, D. I. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal explorer, The University of Western Australia, 2012.Google Scholar

  • [34]

    CrysAlis PRO (Rigaku Oxford Diffraction, 2015): http://www.rigaku.com/en/rigakuoxford.

  • [35]

    Bruker. SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA, 2000.Google Scholar

  • [36]

    P. McArdle, K. Gilligan, D. Cunningham, R. Dark, M. Mahon, A method for the prediction of the crystal structure of ionic organic compounds – the crystal structures of o-toluidinium chloride and bromide and polymorphism of bicifadine hydrochloride. CrystEngComm. 2004, 6, 303.Google Scholar

  • [37]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [38]

    C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281.Google Scholar

  • [39]

    G. M. Sheldrick, SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3.Google Scholar

  • [40]

    MERCURY 3.3.8. CCDC (2016).

About the article

aDied: 16th February 2014.

bCurrent address: Banff Academy, Bellevue Road, Banff, Aberdeenshire, AB45 1BY, UK.

Received: 2016-11-02

Accepted: 2016-12-21

Published Online: 2017-03-07

Published in Print: 2017-04-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 4, Pages 317–333, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2020.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in