Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
In This Section
Volume 232, Issue 5 (May 2017)

Issues

Crystal structures of [SbF6] salts of di- and tetrahydrated Ag +, tetrahydrated Pd2 + and hexahydrated Cd2 + cations

Zoran Mazej
  • Corresponding author
  • Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
  • Email:
/ Evgeny Goreshnik
  • Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
Published Online: 2017-02-07 | DOI: https://doi.org/10.1515/zkri-2016-2031

Abstract

The [Ag(H2O)2]SbF6, is triclinic, P1̅ (No. 2), with a=6.6419(3) Å, b=7.6327(3) Å, c=11.1338(3) Å, α=95.492(3)°, β=96.994(3)°, γ=113.535(4)°, V=507.13(4) Å3 at 150 K, and Z=3. There are two crystallographically non-equivalent Ag+ cations. The Ag1 is coordinated by two water molecules with Ag–OH2 distances equal to 2.271(2) Å forming in that way a discrete linear [Ag(H2O)2]+ cation. Additionaly, it forms two short Ag···F contacts (2.630(2) Å), resulting in AgO2F2 plaquette, and four long ones (2×3.001(2) Å and 2×3.095(2) Å) with fluorine atoms located below and above the AgO2F2 plaquette. The H2O molecules bridge Ag2 atoms into {–[Ag(μ-OH2)2]–}n infinite chains, with Ag–O distances of 2.367(2)–2.466(2) Å. The [Pd(H2O)4](SbF6)2·4H2O is monoclinic, P21 /a (No.14), with a=8.172(2) Å, b=13.202(3) Å, c=8.188(3) Å, β=115.10(1)o, V=799.9(4) Å3 at 200 K, and Z=2. Its crystal structure can be described as an alternation of layers of [Pd(H2O)4]2+ cations (interconnected by H2O molecules) and [SbF6] anions. It represents the first example where [Pd(H2O)4]2+ has been structurally determined in the solid state. Four oxygen atoms provided by H2O molecules are in almost ideal square-planar arrangement with Pd–O bond lengths 2×2.004(5) Å and 2×2.022(6) Å. The [Cd(H2O)6](SbF6)2, is orthorhombic, Pnnm (No.58), with a=5.5331(2) Å, b=14.5206(4) Å, c=8.9051(3) Å, V=715.47(4) Å3 at 200 K, and Z=2. It consists of [Cd(H2O)6]2+ cations and [SbF6] anions.

This article offers supplementary material which is provided at the end of the article.

Keywords: cadmium; crystal structures; hexafluoridoantimonates; hydrates; palladium; silver

References

  • [1]

    J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, 4th Editon, Harper Collins College Publishers, New York, 1993, p. 304.Google Scholar

  • [2]

    S. F. Lincoln, D. T. Richen, A. G. Sykes, Metal aqua ions. in Comprehensive Coordination Chemistry II, Vol. 1 (Eds. J. A. McCleverty, T. J. Meyer) Elsevier-Pergamon, Oxford, p. 515, 2003.Google Scholar

  • [3]

    N. K. Makhmudova, K. T. Sharipov, T. S. Khodashova, M. A. Poray-Koshits, N. A. Parpiev, Crystal structure of [Ag(H2O)2] [AgMoO2(C6H5CONO)2]. Dokl. Akad. Nauk 1985, 280, 1360. (in Russian).Google Scholar

  • [4]

    T. E. Gilewski, J. Gawraczyński, M. Derzsi, Z. Jagličić, Z. Mazej, P. Połczyński, R. Jurczakowski, P. J. Leszczyński, W. Grochala, [Ag(OH2)2][Ag(SO4)2]: the first hydrate of an Ag(II) salt, Chem. Eur. J. in press, DOI: .CrossrefGoogle Scholar

  • [5]

    Ł. Lebioda, M. Ciechanowicz-Rutkowska, L. C. W. Baker, J. Grochowski, The structure of [Li(H2O)4]2H[Co4H12I3O24]·3H2O – a heteropoly periodate representative of a new type of heteropoly salt. Acta Cryst. 1980, B36, 2530.Google Scholar

  • [6]

    M. Touboul, E. Bétourné, G. Nowogrocki, Crystal structure and dehydration process of Li(H2O)4B(OH)4·2H2O. J. Solid State Chem. 1995, 115, 549.Google Scholar

  • [7]

    V. V. Klepov, A. V. Vologzhanina, L. B. Serezhkina, V. N. Serezhkin, Synthesis, structure, and properties of [Be(H2O)4][UO2(CH3COO)3]2. Radiochemistry 2013, 55, 36.Google Scholar

  • [8]

    S. A. Cotton, Chemistry of Precious Metals, Blackie Academic & Professional, London, 1997.Google Scholar

  • [9]

    A. Pasquarello, I. Petri, P. S. Salmon, O. Parisel, R. Car, É. Tóth, D. Hugh Powell, H. E. Fischer, L. Helm, A. E. Merbach, First solvation shell of the Cu(ll) aqua ion: evidence for fivefold coordination. Science 2001, 291, 856.Google Scholar

  • [10]

    F. J. Waller, A. G. M. Barrett, D. C. Braddock, D. Ramprasad, R. Murray McKinnell, A. J. P. White, D. J. Williams, R. Ducray, Tris(trifluoromethanesulfonyl)methide (“triflide”) anion: convenient preparation, X-ray crystal structures, and exceptional catalytic activity as a counterion with ytterbium(III) and scandium(III). J. Org. Chem. 1999, 64, 2910.Google Scholar

  • [11]

    O. Carugo, K. Djinović, M. Rizzi, Comparison of the co-ordinative behaviour of calcium(II) and magnesium(II) from crystallographic data. J. Chem. Soc. Dalton Trans. 1993, 2127.Google Scholar

  • [12]

    J. Burgess, E. Raven, Calcium in biological systems. in Advances in Inorg. Chemistry vol. 61, (Eds. R. van Eldik, C. D. Hubbard) Academic Press, London, 2009, pp. 251–366.Google Scholar

  • [13]

    M. J. Hardie, C. L. Raston, A. Salinas, A 3,12-connected vertice sharing adamantoid hydrogen bonded network featuring tetrameric clusters of cyclotriveratrylene. Chem. Commun. 2001, 1850.Google Scholar

  • [14]

    H. Reuter, S. Kamaha, O. Zerzouf, Hydrogen bonds in the crystal structure of strontium hydroxide octahydrate Sr(OH)2·8H2O. Z. Naturforsch. 2007, 62b, 215.Google Scholar

  • [15]

    H. Manohab, S. Ramaseshan, The crystal structure of barium hydroxide octahydrate Ba(OH)2·8H2O. Zeitschrift für Kristallographie 1964, 119, 357.Google Scholar

  • [16]

    J. Näslund, I. Persson, M. Sandström, Solvation of the bismuth(III) ion by water, dimethyl sulfoxide, N,N’-dimethylpropyleneurea, and N,N-dimethylthioformamide. An EXAFS, large-angle X-ray scattering, and crystallographic structural study. Inorg. Chem. 2000, 39, 4012.Google Scholar

  • [17]

    M. Weil, NaSr(AsO4)(H2O)9: the (Sr,As) analogue of nabaphite and nastrophite. Acta Cryst. 2009, E65, i75.Google Scholar

  • [18]

    M. Malischewski, D. V. Peryshkov, E. V. Bukovsky, K. Seppelt, S. H. Strauss, Structures of M2(SO2)6B12F12 (M=Ag or K) and Ag2(H2O)4B12F12: comparison of the coordination of SO2 versus H2O and of B12F122− versus other weakly coordinating anions to metal ions in the solid state. Inorg. Chem. 2016, 55, 12254.Google Scholar

  • [19]

    G. Johanson, M. Sandström, The crystal structure of heyacadmium(II) perchlorate [Cd(H2O)6](ClO4)2. Acta Chemica Scandinavica 1987, A41, 113.Google Scholar

  • [20]

    I. Tiritiris, T. Schleid, Synthese und kristallstruktur von cadmium-dodekahydro-closo-dodekaborat-hexahydrat, Cd(H2O)6[B12H12]. Z. Anorg. Allg. Chem. 2005, 631, 1593.Google Scholar

  • [21]

    O. V. Kovalchukova, A. I. Stash, D. D. Nguyen, S. B. Strashnova, V. K. Bel’skii, Hexaaquacobalt(II) and hexaaquacadmium(II) 4-nitro-2,3,5,6-tetraoxopyridinates [M(H2O)6](C5HN2O6)2·2H2O (M=Co and Cd): synthesis, structures, and properties. Russ. J. Coord. Chem. 2013, 39, 234.Google Scholar

  • [22]

    B.-Q. Wang, H.-B. Yan, C.-J. Fang, Z. Zhang, A new dabco-templated metal sulfate: 1,4-diazoniabicyclo[2.2.2]octane hexaaquacadmium bis(sulfate). Acta Cryst. 2012, E68, m759.Google Scholar

  • [23]

    W. Ludwig, R. Wartchow, Crystal structure of silver tetrafluoroborate monohydrate, Ag(BF4)(H2O). Z. Kristallogr. – Cryst. Mater. 1996, 211, 631.Google Scholar

  • [24]

    O. Moers, D. Henschel, A. Blaschette, P. Jones, Silber(I)-di(arensulfonyl)amide und ein silber(I)-(arensulfonyl)(alkansulfonyl)amid: von bändern zu lamellaren schichten mit kurzen zwischenschichtkontakten C–H···Hal–C oder C–Br···Br–C. Z. Anorg. Allg. Chem. 2000, 626, 2399.Google Scholar

  • [25]

    B. Li, S.-Q. Zang, H.-Y. Li, Y.-J. Wu, T. C. W. Mak, Diverse intermolecular interactions in silver(I)-organic frameworks constructed with flexible supramolecular synthons. J. Organomet. Chem. 2012, 708–709, 112.Google Scholar

  • [26]

    P. Jones, T. Hammann, A. Blaschette, H. K. Cammenga, M. Epple, Polysulfonylamine. XLII. Ein aquasilber(I)-komplex mit einem Ag(μ-H2O)2Ag-strukturmotiv: Röntgenstrukturanalytische und thermoanalytische charakterisierung von aqua(1,1,3,3-tetraoxo-1,3,2-benzodithiazolido)silber(I). Z. Anorg. Allg. Chem. 1993, 619, 1441.Google Scholar

  • [27]

    E. Tílvez, M. I. Menéndez, R. López, Unraveling the reaction mechanism on nitrile hydration catalyzed by [Pd(OH2)4]2+: insights from theory. Inorg. Chem. 2013, 52, 7541; and references therein.Google Scholar

  • [28]

    J. Purans, B. Fourest, C. Cannes, V. Sladkov, F. David, L. Venault, M. Lecomte, Structural investigation of Pd(II) in concentrated nitric and perchloric acid solutions by XAFS. J. Phys. Chem. B 2005, 109, 11074.Google Scholar

  • [29]

    Z. Mazej, E. Goreshnik, unpublished results.Google Scholar

  • [30]

    Z. Mazej, E. Goreshnik, Crystal structures of phases observed in [H3O]+/M2+/[SbF6] system (M=Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Cd). J. Fluorine Chem. 2017, 193, 82.Google Scholar

  • [31]

    T. A. O’Donnell, Superacids and Acidic Melts as Inorganic Chemical Reaction Media, VCH Publishers, Inc., New York, 1993.Google Scholar

  • [32]

    Z. Mazej, P. Benkič, K. Lutar, B. Žemva, Novel oxonium compounds of lanthanoids: synthesis of (H3O)3La2F(AsF6)8, and synthesis and crystal structures of (H3O)8La2F(AsF6)13 and (H3O)4La2F(AsF6)9·2AsF3. J. Fluorine Chem. 2001, 112, 173.Google Scholar

  • [33]

    Z. Mazej, E. Goreshnik, Z. Jagličić, Syntheses and crystal structures of [H3O]+/M2+ (M=Fe, Zn, Cu, Hg) salts with [AsF6]. Eur. J. Inorg. Chem. 2012, 1734.Google Scholar

  • [34]

    Z. Mazej, E. Goreshnik, Crystal structures of dioxonium lanthanoid(III) pentakis(tetrafluoridoborates) of lanthanum and cerium. J. Fluorine Chem. Article in Press, DOI: 10.1016/j.jfluchem.2016.05.014.CrossrefGoogle Scholar

  • [35]

    M. Berkei, M. Schürmann, E. Bernhardt, H. Willner, Die koordination des [Hg2]2+-kations in der konjugierten supersäure HF/SbF5 durch CO oder H2O: Kristallstruktur von [Hg2(OH2)2][SbF6]2. Z. Naturforsch. 2002, 57b, 615.Google Scholar

  • [36]

    K. Seppelt, The platinum(II) salt Pt(H2O)4(SbF6)2. Z. Anorg. Allg. Chem. 2010, 636, 2391.Google Scholar

  • [37]

    A. Meuwsen, H. Mögling, Zur kenntnis von SbCl5, HSbCl6, und HSbF6. Z. anorg. allg. Chem. 1956, 285, 262.Google Scholar

  • [38]

    I. D. Brown, Bond valences—a simple structural model for inorganic chemistry. Chem. Soc. Rev. 1978, 7, 359.Google Scholar

  • [39]

    N. E. Brese, M. O’Keefe, Bond-valence parameters for solids. Acta Crystallogr. Sect. B 1991, 47, 192.Google Scholar

  • [40]

    I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Sect. B 1985, 41, 244.Google Scholar

  • [41]

    T. Steiner, The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48.Google Scholar

  • [42]

    D. T. Brown, E. C. Beret, E. Martin-Zamora, A. K. Soper, E. Sánchez Marcos, Axial structure of the Pd(II) aqua ion in solution. J. Amer. Chem. Soc. 2012, 134, 962.Google Scholar

  • [43]

    Z. Mazej, E. Goreshnik, G. Tavčar, X-ray single crystal structures of Hg(AuF6)2 and AgFAuF6. J. Fluorine Chem. 2011, 132, 686.Google Scholar

  • [44]

    Z. Mazej, E. Goreshnik, X-ray single crystal structures of Cd(AuF6)2, Mg(HF)AuF4AuF6 and KAuF6 and vibrational spectra of Cd(AuF6)2 and KAuF6. Solid State Sciences 2006, 8, 671.Google Scholar

  • [45]

    CrystalClear: Rigaku Corporation, Woodland, TX, USA, 1999.Google Scholar

  • [46]

    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, Completion and Refinement of crystal Structures with SIR92. J. Appl. Cryst. 1993, 26, 343.Google Scholar

  • [47]

    Molecular Structure Corporation. teXsan for Windows, Single Crystal Structure Analysis Software. Version 1.06, MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA, 1997–1999.Google Scholar

  • [48]

    G. M. Sheldrick, A short history of SHELX. Acta Cryst. 2008, A64, 112.Google Scholar

  • [49]

    L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837.Google Scholar

  • [50]

    CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171.NET).Google Scholar

  • [51]

    L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786.Google Scholar

  • [52]

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339.Google Scholar

  • [53]

    L. Palatinus, S. Jagannatha Prathapa, S. van Smaalen, EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Cryst. 2012, 45, 575.Google Scholar

  • [54]

    G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3.Google Scholar

  • [55]

    L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. App. Cryst. 2012, 45, 849.Google Scholar

  • [56]

    Diamond – Crystal and Molecular Structure Visualization Crystal Impact – Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany http://www.crystalimpact.com/diamond.

About the article

Received: 2016-12-06

Accepted: 2016-12-28

Published Online: 2017-02-07

Published in Print: 2017-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2031.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in