Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 7-9

Issues

A new solid solution compound with the Sr21Mn4Sb18 structure type: Sr13Eu8Cd3Mn1Sb18

Elizabeth L. Kunz Wille / Joya A. Cooley / James C. Fettinger / Nasrin Kazem / Susan M. Kauzlarich
  • Corresponding author
  • Department of Chemistry, One Shields Ave, University of California, Davis, CA 95616, USA, Tel.: + 1-530-752-4756, Fax: + 1-530-752-8995
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-11 | DOI: https://doi.org/10.1515/zkri-2016-2034

Abstract

The title compound with the nominal formula, Sr13Eu8Cd3Mn1Sb18, was synthesized by Sn-flux. Structure refinement was based on single-crystal X-ray diffractometer data. Employing the exact composition, the formula is Sr13.23Eu7.77Cd3.12Mn0.88Sb18 for the solid solution Sr21-xEuxCd4-yMnySb18. This phase adopts the Sr21Mn4Sb18 type structure with site preferences for both Eu and Cd. The structure crystallizes in the monoclinic system in space group C2/m and Z=4: a=18.1522(11), b=17.3096(10), c=17.7691(10) Å, β=91.9638(8)°, 6632 F2 values, 216 variables, R1=0.0254 and wR2=0.0563. Site selectivity of the elements in this new compound will be discussed in relationship with the Sr21Mn4Sb18 type structure and other related structure types. Temperature dependent magnetic susceptibility data reveal Curie–Weiss paramagnetism with an experimental moment of 19.3 μB/f.u. and a Weiss constant of 0.4 K. Magnetic ordering is seen at low temperatures, with a transition temperature of 3.5 K.

Keywords: magnetic properties; site specific substitution; Sr21Mn4Sb18; Zintl phase

References

  • [1]

    S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 2006, 18, 1873.Google Scholar

  • [2]

    G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nat. Mater. 2008, 7, 105.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    S. M. Kauzlarich, S. R. Brown, G. Jeffrey Snyder, Zintl phases for thermoelectric devices. Dalton Trans 2007, 2099.Web of ScienceGoogle Scholar

  • [4]

    Shi, X., L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 2016, 61, 379.Web of ScienceGoogle Scholar

  • [5]

    N. Kazem, S. M. Kauzlarich, Chapter 288 – Thermoelectric properties of Zintl Antimonides. in Handbook on the Physics and Chemistry of Rare Earths, (Eds. G. B. Jean-Claude and K.P. Vitalij) Elsevier, North Holland, p. 177, 2016.Google Scholar

  • [6]

    H. Kim, C. L. Condron, A. P. Holm, S. M. Kauzlarich, Synthesis, structure, and magnetic properties of a new ternary Zintl phase: Sr21Mn4Sb18. J. Am. Chem. Soc. 2000, 122, 10720.Google Scholar

  • [7]

    A. P. Holm, M. M. Olmstead, S. M. Kauzlarich, The crystal structure and magnetic properties of a new ferrimagnetic semiconductor: Ca21Mn4Sb18. Inorg. Chem. 2003, 42, 1973.Google Scholar

  • [8]

    S.-Q. Xia, S. Bobev, Diverse polyanions based on MnBi4 and MnSb4 tetrahedra: polymorphism, structure, and bonding in Ca21Mn4Bi18 and Ca21Mn4Sb18. Inorg. Chem. 2007, 46, 874.Google Scholar

  • [9]

    S.-Q. Xia, S. Bobev, Zintl phase variations through cation selection. Synthesis and structure of A21Cd4Pn18 (A=Eu, Sr, Ba; Pn=Sb, Bi). Inorg. Chem. 2008, 47, 1919.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    N.-T. Suen, Y. Wang, S. Bobev, Synthesis, crystal structures, and physical properties of the new Zintl phases A21Zn4Pn18 (A=Ca, Eu; Pn=As, Sb) – Versatile arrangements of [ZnPn4] tetrahedra. J. Solid State Chem. 2015, 227, 204.Web of ScienceGoogle Scholar

  • [11]

    Y. Wang, G. M. Darone, S. Bobev, The new Zintl phases Eu21Cd4Sb18 and Eu21Mn4Sb18. J. Solid State Chem. 2016, 238, 303.Web of ScienceGoogle Scholar

  • [12]

    B. Saparov, S. Bobev, A. Ozbay, E. R. Nowak, Synthesis, structure and physical properties of the new Zintl phases Eu11Zn6Sb12 and Eu11Cd6Sb12. J. Solid State Chem. 2008, 181, 2690.Web of ScienceGoogle Scholar

  • [13]

    N. Kazem, A. Hurtado, F. Sui, S. Ohno, A. Zevalkink, G. J. Snyder, S. M. Kauzlarich, High temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6–xZnxSb12. Chem. Mater. 2015, 27, 4413.Google Scholar

  • [14]

    N. Kazem, W. Xie, S. Ohno, A. Zevalkink, G. J. Miller, G. J. Snyder, S. M. Kauzlarich, High-temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6Sb12–xAsx (x<3). Chem. Mater. 2014, 26, 1393.Web of ScienceGoogle Scholar

  • [15]

    P. C. Canfield, Z. Fisk, Growth of single crystals from metallic fluxes. Phil. Mag. B 1992, 65, 1117.Google Scholar

  • [16]

    R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751.CrossrefGoogle Scholar

About the article

Received: 2016-12-07

Accepted: 2017-02-08

Published Online: 2017-03-11

Published in Print: 2017-07-26


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 7-9, Pages 593–599, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-2034.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in