Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 232, Issue 7-9

Issues

RhCd9+δ (−1.18≤δ≤0.29) a γ-brass related cubic giant cell structure

Partha Pratim Jana
  • Corresponding author
  • Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India, Tel.: 03222-283330
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-12 | DOI: https://doi.org/10.1515/zkri-2017-2045

Abstract

The compound RhCd9+δ (−1.18≤δ≤0.29) has been synthesized and the average structure has been analyzed by single crystal X-ray diffraction. The average structure crystallizes in the face centered cubic space group F4̅3m (216) and contains ~405 atoms/unit cell. It represents a (2aγ)3-superstructure of cubic γ-brass and is isostructural to Rh7−xMg44+x. The comparison between the structures of RhCd9+δ and Rh7−xMg44+x has been presented using a layer description. The structure of the title phase has also been described by a “cluster” concept. The electronic structure of RhCd9+δ (−1.18≤δ≤0.29) shows that the phase is stabilized by a Hume-Rothery mechanism.

Keywords: complex intermetallics; crystal growth; crystal structure; solid state synthesis; X-ray diffraction

References

  • [1]

    W. Hume-Rothery, J. Inst. Met. 1926, 35, 309.Google Scholar

  • [2]

    W. Hume-Rothery, G. V. Raynor, The Structure of Metals and Alloys, Institute of Metals, London, UK, 1954.Google Scholar

  • [3]

    U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases, 1st ed. CRC Press, Boca Raton, FL, USA, 2010.Google Scholar

  • [4]

    O. v. Heidenstam, A. Johansson, S. Westman, Acta Chem. Scand. 1968, 22, 653.CrossrefGoogle Scholar

  • [5]

    J. K. Brandon, R. Y. Brizard, P. C. Chieh, R. K. McMillan, W. B. Pearson, Acta Crystallogr. B 1974, 30, 1412.CrossrefGoogle Scholar

  • [6]

    O. Gourdon, D. Gout, D. J. Williams, T. Proffen, S. Hobbs, G. Miller, J. Inorg. Chem. 2007, 46, 251.Google Scholar

  • [7]

    P. P. Jana, S. Lidin, J. Solid State Chem. 2013, 201, 244.Google Scholar

  • [8]

    E. A. Lord, S. Ranganathan, J. Non-Cryst. Solids 2004, 334–335, 121.Google Scholar

  • [9]

    P. P. Jana, S. Lidin, CrystEngComm 2013, 15, 745.CrossrefGoogle Scholar

  • [10]

    P. P. Jana, S. Lidin, Inorg. Chem. 2015, 54, 713.Google Scholar

  • [11]

    S. Thimmaiah, G. Miller, Inorg. Chem. 2013, 52, 1328.Google Scholar

  • [12]

    B. Koley, S. Ghanta, S. Misra, P. P. Jana, J. Alloys Compd. 2017, 25, 3760.CrossrefGoogle Scholar

  • [13]

    W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley-Interscience, New York, 1972, pp. 80.Google Scholar

  • [14]

    D. G. Pettifor, Bonding and Structure of Molecules and Solids, Oxford, UK, 1995.Google Scholar

  • [15]

    F. Valentina, N. Degtyareva, S. Afonikova, Solid State Sci. 2015, 49, 61.CrossrefGoogle Scholar

  • [16]

    J. Dshemuchadse, D. Y. Jung, W. Steurer, Acta Crystallogr. B 2011, 67, 269.CrossrefGoogle Scholar

  • [17]

    J. Dshemuchadse, W. Steurer, Intermetallics: Structures, Properties, and Statistics, Oxford, UK, 2016.Web of ScienceGoogle Scholar

  • [18]

    W. Hornfeck, S. Thimmaiah, S. Lee, B. Harbrecht, Chem. Eur. J. 2004, 10, 4616.CrossrefGoogle Scholar

  • [19]

    A. Westgren, W. Ekman Arkiv Kemi, Mineral. Geol. B 1930, 10, 1.Google Scholar

  • [20]

    O. K. Andersen, Phys. Rev. B 1975, 12, 3060.Google Scholar

  • [21]

    O. K. Andersen, O. Jepsen, Phys. Rev. Lett. 1984, 53, 2571.CrossrefGoogle Scholar

  • [22]

    O. K. Andersen, O. Jepsen, D. Glötzel, W. R. L. Lambrecht, in Highlights of Condensed Matter Theory, North-Holland, New York, 1985.Google Scholar

  • [23]

    O. K. Andersen, Phys. Rev. B 1986, 34, 2439.Google Scholar

  • [24]

    U. von Barth, L. Hedin, J. Phys. C 1972, 5, 1629.Google Scholar

  • [25]

    D. Koelling, B. N. Harmon, J. Phys. C 1977, 10, 3107.Google Scholar

  • [26]

    O. Jepsen, O. K. Andersen, Z. Phys. B 1995, 97, 35.Google Scholar

  • [27]

    P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B 1994, 49, 16223.Google Scholar

  • [28]

    V. Petřiček, M. Dušek, L. Palatinus, The Crystallographic Computing System, Jana 2006, Institute of Physics, Praha, Czech Republic, 2006.Google Scholar

  • [29]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.CrossrefGoogle Scholar

About the article

Received: 2017-01-31

Accepted: 2017-04-05

Published Online: 2017-05-12

Published in Print: 2017-07-26


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 7-9, Pages 611–617, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2045.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in