Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 233, Issue 1

Issues

Towards clathrates. 2. The frozen states of hydration of tert-butanol

Lukasz Dobrzycki
  • Corresponding author
  • The Czochralski Laboratory of Advanced Crystal Engineering, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland, Phone: +0048225526360, Fax: +0048228222892
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-19 | DOI: https://doi.org/10.1515/zkri-2017-2074

Abstract

A new crystal structure of tert-butanol and water crystallizing as the decahydrate is reported. The crystallization of the mixture in the desired molar ratio was performed in a capillary placed directly on a goniometer of a single crystal diffractometer at 200 K and ambient pressure using focused IR laser radiation. The crystals were grown while the melting zone formed by the IR laser was moved along the capillary. Usually the crystallization process should be long enough (hours) in order to obtain a good quality single crystal. However, in the case of tert-butanol decahydrate, such a long process led to separation of the ice and alcohol. Only fast crystallization taking tens of seconds allowed crystallization of the desired crystalline phase. In the decahydrate tert-butanol molecules are located in channels formed by water molecules. Hydroxyl groups are anchored to the water framework via hydrogen bonds. All water molecules in the structure have hydrogen atoms disordered equally over two sites; the hydroxyl group is likewise disordered. This effect is observed at both, 200 K and 100 K. Raman spectra recorded for the crystalline phase suggest dynamic disorder at higher temperature, converting to static at lower T. The decahydrate of tert-butanol, together with already known its di- and hepta-hydrates, display similar features to those observed for series of tert-butylamine hydrates. The latter structures behave as frozen steps of amine hydration observed as crystal structures leading, at maximum dilution, to hexagonal ice. Hydrates of tert-butanol nicely follow this tendency completing the relationship found for the tert-butylamine: water system.

This article offers supplementary material which is provided at the end of the article.

Keywords: hydrates; hydrate clathrates; in situ crystallization; tert-butanol; water

Dedicated to: Professor Roland Boese on the occasion of his birthday.

References

  • [1]

    F. E. Anderson, J. M. Prausnitz, Inhibition of gas hydrates by methanol. AIChE J. 1986, 32, 1321.CrossrefGoogle Scholar

  • [2]

    C. A. Koh, Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 2002, 31, 157.CrossrefGoogle Scholar

  • [3]

    T. Takamukua, K. Saishoa, S. Nozawab, T. Yamaguchic, X-ray diffraction studies on methanol–water, ethanol–water, and 2-propanol–water mixtures at low temperatures. J. Mol. Liq. 2005, 119, 133.CrossrefGoogle Scholar

  • [4]

    S. S. N. Murthy, Phase behavior of the supercooled aqueous solutions of dimethyl sulfoxide, ethylene glycol, and methanol as seen by dielectric spectroscopy. J. Phys. Chem. A 1999, 103, 7927.Google Scholar

  • [5]

    A. Chapoy, R. Anderson, H. Haghighi, T. Edwards, B. Tohidi, Can n-propanol form hydrate? Ind. Eng. Chem. Res. 2008, 47, 1689.CrossrefGoogle Scholar

  • [6]

    Y. Youn, M. Cha, H. Lee, Spectroscopic observation of the hydroxy position in butanol hydrates and its effect on hydrate stability. ChemPhysChem 2015, 16, 2876.CrossrefGoogle Scholar

  • [7]

    K. Udachin, S. Alavi, J. A. Ripmeester, Single crystal x-ray diffraction observation of hydrogen bonding between 1-propanol and water in a structure II clathrate hydrate. J. Chem. Phys. 2011, 134, 121104.CrossrefGoogle Scholar

  • [8]

    G. M. Fahy, B. Wowk, J. Wu, J. Phan, C. Rasch, A. Chang, E. Zendejas, Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 2004, 48, 157.CrossrefGoogle Scholar

  • [9]

    K. J. Tauer, W. N. Lipscomb, On the crystal structures, residual entropy and dielectric anomaly of methanol. Acta Cryst. 1952, 5, 606.CrossrefGoogle Scholar

  • [10]

    M. T. Kirchner, D. Das, R. Boese, Cocrystallization with acetylene: molecular complex with methanol. Cryst. Growth Des. 2008, 8, 763.CrossrefGoogle Scholar

  • [11]

    P.-G. Jönsson, Hydrogen bond studies. CXIII. The crystal structure of ethanol at 87 K. Acta Cryst. 1976, B32, 232.Google Scholar

  • [12]

    R. Boese, H.-C. Weiss, 1,2-Ethanediol (ethylene glycol) at 130 K. Acta Cryst. 1998, C54, 9800024.Google Scholar

  • [13]

    D. R. Allan, S. J. Clark, M. J. P. Brugmans, G. J. Ackland, W. L. Vos, Structure of crystalline methanol at high pressure. Phys. Rev. B 1998, 58, R11809.CrossrefGoogle Scholar

  • [14]

    F. P. A. Fabbiani, D. C. Levendis, G. Buth, W. F. Kuhs, N. Shankland, H. Sowa, Searching for novel crystal forms by in situ high-pressure crystallisation: the example of gabapentin heptahydrate. CrystEngComm 2010, 12, 2354.CrossrefGoogle Scholar

  • [15]

    F. P. A. Fabbiani, G. Buth, B. Dittrich, H. Sowa, Pressure-induced structural changes in wet vitamin B12. CrystEngComm 2010, 12, 2541.CrossrefGoogle Scholar

  • [16]

    K. F. Dziubek, A. Katrusiak, Pressure-induced pseudorotation in crystalline pyrrolidine. Phys. Chem. Chem. Phys. 2011, 13, 15428.CrossrefGoogle Scholar

  • [17]

    C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge structural database. Acta Cryst. 2016, B72, 171.Google Scholar

  • [18]

    K. Pachler, M. von Stackelberg. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1963, 119, 15.Google Scholar

  • [19]

    B. Meuthen, M. von Stackelberg, Die kristallstruktur des phenolhydrates. Z. Elektrochem. 1960, 64, 387.Google Scholar

  • [20]

    H. S. Kim, G. A. Jeffrey, Crystal structure of 2,5-dimethyl-2,5-hexanediol tetrahydrate: a water-hydrocarbon layer structure. J. Chem. Phys. 1970, 53, 3610.Google Scholar

  • [21]

    X. Hao, S. Parkin, C. P. Brock, The unusual phases of anhydrous and hydrated pinacol. Acta Cryst. 2005, B61, 689.Google Scholar

  • [22]

    J.-C. Rosso, L. Carbonnel, Le système eau-butanol tertiaire. C. R. Acad. Sc. Paris C 1968, 267, 4.Google Scholar

  • [23]

    J. B. Ott, J. R. Goates, B. A. Waite, (Solid+liquid) phase equilibria and solid-hydrate formation in water +methyl, +thyl, +isopropyl, and +tertiary butyl alcohols. J. Chem. Thermodyn. 1979, 11, 739.CrossrefGoogle Scholar

  • [24]

    M. Woznyj, H.-D. Lüdemann, The pressure dependence of the phase diagram t-butanol/water. Z. Naturforsch. 1985, 40a, 693.Google Scholar

  • [25]

    K. Kasraian, P. P. DeLuca, Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm. Res. 1995, 12, 484.CrossrefGoogle Scholar

  • [26]

    D. L. Teagarden, D. S. Baker, Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur. J. Pharm. Sci. 2002, 15, 115.CrossrefGoogle Scholar

  • [27]

    S. Vessot, J. A. Andrieu, Review on freeze drying of drugs with tert – butanol (TBA) + water systems: characteristics, advantages, drawbacks. Dry Technol. 2012, 30, 377.CrossrefGoogle Scholar

  • [28]

    D. Mootz, D. Staben, Die hydrate von terf-butanol: Kristallstruktur von Me3COH·2 H20 und Me3COH·7 H20. Z. Naturforsch. B Chem. Sci. 1993, 48, 1325.Google Scholar

  • [29]

    D. L. Fowler, W. V. Loebenstein, D. B. Pall, C. A. Kraus, Some unusual hydrates of quaternary ammonium salts. J. Am. Chem. Soc. 1940, 62, 1140.CrossrefGoogle Scholar

  • [30]

    S. Alavi, K. Udachin, J. A. Ripmeester, Effect of guest–host hydrogen bonding on the structures and properties of clathrate hydrates. Chem. Eur. J. 2010, 16, 1017.CrossrefGoogle Scholar

  • [31]

    R. G. Grim, B. C. Barnes, P. G. Lafond, W. A. Kockelmann, D. A. Keen, A. K. Soper, M. Hiratsuka, K. Yasuoka, C. A. Koh, A. K. Sum, Observation of interstitial molecular hydrogen in clathrate hydrates. Angew. Chem. Int. Ed. 2014, 53, 10710.CrossrefGoogle Scholar

  • [32]

    R. K. McMullan, T. H. Jordan, G. A. Jeffrey, Polyhedral clathrate hydrates. XII. The crystallographic data on hydrates of ethylamine, dimethylamine, trimethylamine, n-propylamine (two forms), iso-propylamine, diethylamine (two forms), and tert-butylamine. J. Chem. Phys. 1967, 47, 1218.CrossrefGoogle Scholar

  • [33]

    T. H. Jordan, T. C. W. Mak, Polyhedral clathrate hydrates. XIII. The structure of (CH3CH2)2NH·8⅔H2O. J. Chem. Phys. 1967, 47, 1222.CrossrefGoogle Scholar

  • [34]

    D. Panke, Polyhedral clathrate hydrates. XV. The structure of 4(CH3)3N·41H2O. J. Chem. Phys. 1968, 48, 2990.CrossrefGoogle Scholar

  • [35]

    R. K. McMullan, G. A. Jeffrey, D. Panke, Polyhedral clathrate hydrates. XVI. Structure of isopropylamine octahydrate. J. Chem. Phys. 1970, 53, 3568.CrossrefGoogle Scholar

  • [36]

    L. Dobrzycki, P. Taraszewska, R. Boese, M. K. Cyrański, Pyrrolidine and its hydrates in the solid state. Cryst. Growth Des. 2015, 15, 4804.CrossrefGoogle Scholar

  • [37]

    E. D. Sloan, C. A. Koh, Clathrate hydrates of natural gases (3rd ed) Taylor & Francis/CRC Press, Boca Raton, FL, USA, 2008.Google Scholar

  • [38]

    R. K. McMullan, G. A. Jeffrey, T. H. Jordan, Polyhedral clathrate hydrates. XIV. The structure of (CH3)3CNH2·9¾H2O. J. Chem. Phys. 1967, 47, 1229.CrossrefGoogle Scholar

  • [39]

    G. A. Jeffrey, Water structure in organic hydrates. Acc. Chem. Res. 1969, 11, 344.Google Scholar

  • [40]

    D. Staben, D. Mootz, The 7.25-hydrate oftert-butylamine. A semi-clathrate and complex variant of the cubic 12 Å structure type. J. Incl. Phen. Mol. Recogn. Chem. 1995, 22, 145.CrossrefGoogle Scholar

  • [41]

    Ł. Dobrzycki, P. Taraszewska, R. Boese, M. K. Cyrański, S. A. Cirkel, Towards clathrates: frozen states of hydration of tert-butylamine. Angew. Chem. Int. Ed. 2015, 54, 10138.CrossrefGoogle Scholar

  • [42]

    Ł. Dobrzycki, P. Taraszewska, R. Boese, M. K. Cyrański, S. A. Cirkel, Towards clathrates: frozen states of hydration of tert-butylamine. Angew. Chem. 2015, 127, 10276.CrossrefGoogle Scholar

  • [43]

    Ł. Dobrzycki, K. Pruszkowska, R. Boese, M. K. Cyrański, Hydrates of cyclobutylamine: modifications of gas clathrate types sI and sH. Cryst. Growth Des. 2016, 16, 2717.CrossrefGoogle Scholar

  • [44]

    R. Granero-García, A. Falenty, F. P. A. Fabbiani, Dense semi-clathrates at high pressure: a study of the water-tert-butylamine system. Chem. Eur. J. 2017, 23, 3691.CrossrefGoogle Scholar

  • [45]

    R. Boese, Special issue on in situ crystallization. Z. Kristallogr. 2014, 229, 595.Google Scholar

  • [46]

    M. T. Kirchner, R. Boese, W. E. Billups, L. R. Norman, Gas hydrate single-crystal structure analyses. J. Am. Chem. Soc. 2004, 126, 9407.CrossrefGoogle Scholar

  • [47]

    APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2013.Google Scholar

  • [48]

    SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2013.Google Scholar

  • [49]

    TWINABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.Google Scholar

  • [50]

    G. M. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. 1990, A46, 467.Google Scholar

  • [51]

    G. M. Sheldrick, A short history of SHELX. Acta Cryst. 2008, A64, 112.Google Scholar

  • [52]

    A. J. C. Wilson, International Tables for Crystallography, Vol. c, Kluwer, Dordrecht, 1992.Google Scholar

  • [53]

    L. J. Farrugia, WinGX and ORTEP for windows: an update. J. Appl. Cryst. 2012, 45, 849.CrossrefGoogle Scholar

  • [54]

    P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 1929, 34, 57.CrossrefGoogle Scholar

  • [55]

    P. A. McGregor, D. R. Allan, S. Parsons, S. J. Clark, Hexamer formation in tertiary butyl alcohol (2-methyl-2-propanol, C4H10O). Acta Cryst. 2006, B62, 599.Google Scholar

  • [56]

    R. Steininger, J. H. Bilgram, V. Gramlich, W. Petter, Crystal growth, crystal optics, and crystal structure of the phase IV of tertiary-butyl-alcohol. Z. Kristallogr. 1989, 187, 1.CrossrefGoogle Scholar

  • [57]

    A. Budanow, M. Bolte, Private Communication 2010.Google Scholar

  • [58]

    K. Röttger, A. Endriss, J. Ihringer, S. Doyle, W. F. Kuhs, Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Cryst. 1994, B50, 644.Google Scholar

  • [59]

    K. Röttger, A. Endriss, J. Ihringer, S. Doyle, W. F. Kuhs, Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Addendum. Acta Cryst. 2012, B68, 91.Google Scholar

  • [60]

    O. Redlich, A. T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345.CrossrefGoogle Scholar

  • [61]

    P. K. Kipkemboi, P. C. Kiprono, J. J. Sanga, Vibrational spectra of t-butyl alcohol, t-butylamine and t-butyl alcohol + t-butylamine binary liquid mixtures. Bull. Chem. Soc. Ethiop. 2003, 17, 211.Google Scholar

  • [62]

    D. S. Wilcox, B. M. Rankin, D. Ben-Amotz, Distinguishing aggregation from random mixing in aqueous t-butyl alcohol solutions. Farad. Discuss 2013, 167, 177.CrossrefGoogle Scholar

About the article

Received: 2017-05-04

Accepted: 2017-07-24

Published Online: 2017-08-19

Published in Print: 2018-01-26


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 233, Issue 1, Pages 41–49, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2074.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in