Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 233, Issue 6


Temperature-dependent synchrotron X-ray diffraction, pair distribution function and susceptibility study on the layered compound CrTe3

Anna-Lena Hansen
  • Corresponding author
  • Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bastian Dietl
  • Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Etter / Reinhard K. Kremer
  • Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70506 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David C. Johnson / Wolfgang Bensch
  • Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-06 | DOI: https://doi.org/10.1515/zkri-2017-2100


Results of combined synchrotron X-ray diffraction and pair distribution function experiments performed on the layered compound CrTe3 provide evidence for a short range structural distortion of one of the two crystallographically independent CrTe6 octahedra. The distortion is caused by higher mobility of one crystallographically distinct Te ion, leading to an unusual large Debye Waller factor. In situ high temperature X-ray diffraction investigations show an initial crystallization of a minor amount of elemental Te followed by decomposition of CrTe3 into Cr5Te8 and Te. Additional experiments provide evidence that the Te impurity (<1%) cannot be avoided. Analyses of structural changes in the temperature range 100–754 K show a pronounced anisotropic expansion of the lattice parameters. The differing behavior of the crystal axes is explained on the basis of structural distortions of the Cr4Te16 structural building units. An abrupt distortion of the structure occurs at T≈250 K, which then remains nearly constant down to 100 K. The structural distortion affects the spin exchange interactions between Cr3+ cations. A significant splitting between field-cooled (fc) and zero-field-cooled (zfc) magnetic susceptibility is observed below about 200 K. Applying a small external magnetic field results in a substantial spontaneous magnetization, reminiscent of ferro- or ferrimagnet exchange interactions below ~240 K. A Debye temperature of ~150 K was extracted from heat capacity measurements.

This article offers supplementary material which is provided at the end of the article.

Keywords: CrTe3; in situ diffraction methods; layered material; pair distribution function


  • [1]

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666.CrossrefGoogle Scholar

  • [2]

    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766.Web of ScienceCrossrefGoogle Scholar

  • [3]

    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451.CrossrefGoogle Scholar

  • [4]

    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechn. 2012, 7, 699.CrossrefGoogle Scholar

  • [5]

    R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang, R. F. Frindt, Structures of exfoliated single layers of WS2, MoS2 and MoSe2 in aqueous suspension. Phys. Rev. B 2002, 65, 125407.CrossrefGoogle Scholar

  • [6]

    K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    A. Koma, K. Sunouchi, T. Miyajima, Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 1984, 2, 129.CrossrefGoogle Scholar

  • [8]

    A. Koma, K. Ueno, K. Saiki, Heteroepitaxial growth by Van der Waals interaction in one-, two- and three-dimensional materials. J. Crystal Growth 1991, 111, 1029.CrossrefGoogle Scholar

  • [9]

    J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechn. 2008, 3, 206.CrossrefGoogle Scholar

  • [10]

    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nature Nanotechn. 2010, 5, 722.CrossrefGoogle Scholar

  • [11]

    A. Koma, Van der Waals epitaxy – a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216, 72.CrossrefGoogle Scholar

  • [12]

    L. A. Ponomarenko, A. K. Geim, A. A. Zhukov, R. Jalil, S. V. Morozov, K. S. Novoselov, I. V. Grigorieva, E. H. Hill, V. V. Cheianov, V. I. Fal’ko, K. Watanabe, T. Taniguchi, R. V. Gorbachev, Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys. 2011, 7, 958.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, 461.Web of ScienceGoogle Scholar

  • [14]

    A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 2013, 499, 419.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene. Nature 2012, 490, 192.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.Web of ScienceCrossrefGoogle Scholar

  • [17]

    M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. L. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    H. Liu, A. T. Neal, Z. Zhu, D. Tomanek, P. D. Ye, Phosphorene: a new 2D material with high carrier mobility. ACS Nano 2014, 8, 4033.CrossrefGoogle Scholar

  • [19]

    I. Meric, C. Dean, A. Young, J. Hone, P. Kim, K. L. Shepard, Graphene field-effect transistors based on boron nitride gate dielectrics. In: 2010 International Electron Devices Meeting; 2010; 23.2.1.Google Scholar

  • [20]

    L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209.Web of ScienceCrossrefGoogle Scholar

  • [21]

    K. Du, X. Wang, Y. Liu, P. Hu, M. I. B. Utama, C. K. Gan, Q. Xiong, C. Kloc, Weak Van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 2016, 10, 1738.Web of ScienceCrossrefGoogle Scholar

  • [22]

    R. Brec, Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ionics 1986, 22, 3.CrossrefGoogle Scholar

  • [23]

    J. O. Island, A. J. Molina-Mendoza, M. Barawi, R. Biele, E. Flores, J. M. Clamagirand, J. R. Ares, C. Sanchez, H. S. J. van der Zant, R. D’Agosta, I. J. Ferrer, A. Castellanos-Gomez, Electronics and optoelectronics of quasi-one dimensional layered transition metal trichalcogenides. 2D Mater. 2017, 4, 022003.CrossrefGoogle Scholar

  • [24]

    K. Wu, E. Torun, H. Sahin, B. Chen, X. Fan, A. Pant, D. P. Wright, T. Aoki, F. M. Peeters, E. Soignard, S. Tongay, Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nature Commun. 2016, 7, 12952.Web of ScienceCrossrefGoogle Scholar

  • [25]

    M. Barawi, E. Flores, I. J. Ferrer, J. R. Ares, C. Sánchez, Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. J. Mater. Chem. A 2015, 3, 7959.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    E. Flores, J. R. Ares, I. J. Ferrer, C. Sánchez, Synthesis and characterization of a family of layered trichalcogenides for assisted hydrogen photogeneration. Phys. Status Solidi RRL – Rapid Res. Lett. 2016, 10, 802.Web of ScienceCrossrefGoogle Scholar

  • [27]

    P. R. N. Misse, D. Berthebaud, O. I. Lebedev, A. Maignan, E. Guilmeau, Synthesis and thermoelectric properties in the 2D Ti1−xNbxS3 trichalcogenides. Materials 2015, 8, 2514.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Y. Saeed, A. Kachmar, M. A. Carignano, First-principles study of the transport properties in bulk and monolayer MX3 (M=Ti, Zr, Hf and X=S, Se) compounds. J. Phys. Chem. C 2017, 121, 1399.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    E. Guilmeau, D. Berthebaud, P. R. N. Misse, S. Hébert, O. I. Lebedev, D. Chateigner, C. Martin, A. Maignan, ZrSe3-type variant of TiS3: structure and thermoelectric properties. Chem. Mater. 2014, 26, 5585.Web of ScienceCrossrefGoogle Scholar

  • [30]

    J. Dai, M. Li, X. C. Zeng, Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 211.CrossrefWeb of ScienceGoogle Scholar

  • [31]

    F. Lévy, H. Berger, Single crystals of transition metal trichalcogenides. J. Crystal Growth 1983, 61, 61.CrossrefGoogle Scholar

  • [32]

    K. S. Liang, J. P. de Naufville, A. J. Jacobson, R. R. Chianelli, F. Betts, Structure of amorphous transition metal sulfides. J. Non-Cryst. Solids 1980, 35, 1249.Google Scholar

  • [33]

    P. Afanasiev, Synthetic approaches to the molybdenum sulfide materials. Comptes Rendus Chim. 2008, 11, 159.CrossrefWeb of ScienceGoogle Scholar

  • [34]

    K. O. Klepp, H. Ipser, On the phase CrTe3. Monatsh. Chem. 1979, 110, 499.CrossrefGoogle Scholar

  • [35]

    E. Canadell, S. Jobic, R. Brec, J. Rouxel, Electronic structure and properties of anionic mixed valence and layered CrTe3: the question of extended tellurium bonding in transition metal tellurides. J. Solid State Chem. 1992, 98, 59.CrossrefGoogle Scholar

  • [36]

    K. O. Klepp, H. Ipser, CrTe3 – ein neues übergangsmetall-polytellurid. Angew. Chem. 1982, 94, 931.Google Scholar

  • [37]

    S. Kraschinski, S. Herzog, W. Bensch, Low temperature synthesis of chromium tellurides using superlattice reactants: crystallisation of layered CrTe3 at 100°C and the decomposition into Cr2Te3. Solid State Sci. 2002, 4, 1237.CrossrefGoogle Scholar

  • [38]

    M. Behrens, J. Tomforde, E. May, R. Kiebach, W. Bensch, D. Häußler, W. Jäger, A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy. J. Solid State Chem. 2006, 179, 3330.CrossrefGoogle Scholar

  • [39]

    D. C. Johnson, Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 1998, 3, 159.CrossrefGoogle Scholar

  • [40]

    H. Ipser, K. L. Komarek, K. O. Klepp, Transition metal-chalcogen systems viii: the Cr-Te phase diagram. J. Less-Common Met. 1983, 92, 265.CrossrefGoogle Scholar

  • [41]

    M. A. McGuire, V. O. Garlea, S. KC, V. R. Cooper, J. Yan, H. Cao, B. C. Sales, Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B 2017, 95, 144421.CrossrefWeb of ScienceGoogle Scholar

  • [42]

    A. A. Coelho, Topas Academic (Version 6); Australia, 2016.Google Scholar

  • [43]

    D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louër, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stephens, B. H. Toby, Size–strain line-broadening analysis of the ceria round-robin sample. J. Appl. Crystallogr. 2004, 37, 911.CrossrefGoogle Scholar

  • [44]

    P. Juhás, T. Davis, C. L. Farrow, S. J. L. Billinge, PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 2013, 46, 560.Web of ScienceCrossrefGoogle Scholar

  • [45]

    J. Akola, R. O. Jones, Structure and dynamics in amorphous tellurium and Ten clusters: a density functional study. Phys. Rev. B 2012, 85, 134103.CrossrefGoogle Scholar

  • [46]

    W. H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. B 1974, 30, 1195.CrossrefGoogle Scholar

  • [47]

    G. Chattopadhyay, The Cr-Te (Chromium-Tellurium) system. J. Phase Equilibria 1994, 15, 431.CrossrefGoogle Scholar

About the article

Received: 2017-09-13

Accepted: 2017-11-01

Published Online: 2017-12-06

Published in Print: 2018-06-27

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 233, Issue 6, Pages 361–370, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2100.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in