Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

See all formats and pricing
More options …
Volume 233, Issue 9-10


Conformational trimorphism of bis(2,6-dimesitylphenyl)ditelluride

Simon Grabowsky
  • Corresponding author
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ole Mallow
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rumpa Pal
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yves Pergandé
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enno Lork
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Näther
  • Corresponding author
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Beckmann
  • Corresponding author
  • Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 3 und 7, 28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-28 | DOI: https://doi.org/10.1515/zkri-2018-2077


Besides the previously known α-form (monoclinic, P21/c, Z=4) of bis(2,6-dimesitylphenyl)ditelluride, two new polymorphic modifications, namely the β-form (monoclinic, P21/c, Z=8) and the γ-form (triclinic, P1̅, Z=2), were obtained serendipitously during chemical reactions. In all three modifications, the individual molecules possess significantly different conformations and bond parameters, such as Te–Te bond lengths, C–Te–Te bond angles, C–Te–Te–C torsion angles and intramolecular Menshutkin interactions, which is also reflected in their non-covalent interactions with adjacent molecules in the crystal lattice via London dispersion and electrostatic forces. The interplay between intermolecular and intramolecular forces in these conformational polymorphs was investigated using quantum chemical calculations, which reveal that the β-form should be thermodynamically stable at absolute zero. In contrast, crystallization experiments and thermoanalytical investigations indicate that the α-form is stable at high temperatures and therefore, both forms might be related by enantiotropism.

This article offers supplementary material which is provided at the end of the article.

Keywords: conformational polymorphism; crystal modifications; crystal packing; London dispersion; tellurium


  • [1]

    D. Barga, F. Grepioni, L. Maini, Chem. Commun. 2010, 46, 6232.CrossrefGoogle Scholar

  • [2]

    P. Hobza, K. Müller-Dethlefs, Non-Covalent Interactions: Theory and Experiment, Royal Society of Chemistry, Cambridge, UK, 2010.Google Scholar

  • [3]

    K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143.CrossrefGoogle Scholar

  • [4]

    J. D. Dunitz, IUCrJ 2015, 2, 157.CrossrefGoogle Scholar

  • [5]

    J. D. Dunitz, A. Gavezzotti, Angew. Chem. Int. Ed. 2005, 44, 1766.CrossrefGoogle Scholar

  • [6]

    C. Lecomte, E. Espinosa, C. F. Matta, IUCrJ 2015, 2, 161.CrossrefGoogle Scholar

  • [7]

    T. S. Thakur, R. Dubey, G. R. Desiraju, IUCrJ 2015, 2, 159.CrossrefGoogle Scholar

  • [8]

    A. Gavezzotti, New J. Chem. 2016, 40, 6848.CrossrefGoogle Scholar

  • [9]

    C. F. Matta, J. Hernández-Trujillo, T. H. Tang, R. F. W. Bader, Chem. Eur. J. 2003, 9, 1940.CrossrefGoogle Scholar

  • [10]

    J. Poater, M. Solà, F. M. Bickelhaupt, Chem. Eur. J. 2006, 12, 2889.CrossrefGoogle Scholar

  • [11]

    J. Echeverría, G. Aullón, D. Danovich, S. Shaik, S. Alvarez, Nature Chem. 2011, 3, 323.CrossrefGoogle Scholar

  • [12]

    S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 7428.CrossrefGoogle Scholar

  • [13]

    D. J. Liptrot, P. P. Power, Nat. Rev. Chem. 2017, 1, 0004.CrossrefGoogle Scholar

  • [14]

    J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274.CrossrefGoogle Scholar

  • [15]

    J.-D. Guo, D. J. Liptrot, S. Nagase, P. P. Power, Chem. Sci. 2015, 6, 6235.CrossrefGoogle Scholar

  • [16]

    J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12, 231.CrossrefGoogle Scholar

  • [17]

    R. Pal, S. Mebs, M. W. Shi, D. Jayatilaka, J. M. Krzeszczakowska, L. A. Malaspina, M. Wiecko, P. Luger, M. Hesse, Y.-S. Chen, J. Beckmann, S. Grabowsky, Inorg. Chem. 2018, 122, 3665.Google Scholar

  • [18]

    J. Bernstein, A. T. Hagler, J. Am. Chem. Soc. 1978, 100, 673.CrossrefGoogle Scholar

  • [19]

    A. Nangia, Acc. Chem. Res. 2008, 5, 595.Google Scholar

  • [20]

    D. Barga, F. Grepioni, Chem. Soc. Rev. 2000, 29, 229.CrossrefGoogle Scholar

  • [21]

    J. Bernstein, Polymorphism in Molecular Crystals, Oxford University Press, Oxford, UK, 2002.Google Scholar

  • [22]

    J. Bernstein, Cryst. Growth. Des. 2011, 11, 632.CrossrefGoogle Scholar

  • [23]

    A. J. Cruz-Cabeza, J. Bernstein, Chem. Rev. 2014, 114, 2170.CrossrefGoogle Scholar

  • [24]

    A. I. Kitaigorodskii, Adv. Struct. Res. Diffr. Methods 1970, 3, 173.Google Scholar

  • [25]

    A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press, New York, London, 1973.Google Scholar

  • [26]

    J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Chem. Eur. J. 1998, 4, 2136.CrossrefGoogle Scholar

  • [27]

    M. A. Spackman, Phys. Scr. 2013, 87, 048103.CrossrefGoogle Scholar

  • [28]

    M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.CrossrefGoogle Scholar

  • [29]

    J. J. McKinnon, F. P. A. Fabbiani, M. A. Spackman, Cryst. Growth Des. 2007, 7, 755.CrossrefGoogle Scholar

  • [30]

    L. Mazur, A. E. Koziol, K. N. Jarzembska, R. Paprocka, B. Modzelewska-Banachiewicz, Cryst. Growth Des. 2017, 17, 2104.CrossrefGoogle Scholar

  • [31]

    H. Schmidbaur, A. Schnier, Organometallics 2008, 27, 2361.CrossrefGoogle Scholar

  • [32]

    J. Zukerman-Schpector, I. Haiduc, CrystEngComm. 2002, 4, 178.CrossrefGoogle Scholar

  • [33]

    E. R. T. Tiekink, J. Zukerman-Schpector, CrystEngComm 2009, 11, 2701.CrossrefGoogle Scholar

  • [34]

    R. Lo, P. Švec, Z. Růžičková, A. Růžička, R. Hobza, Chem. Commun. 2016, 52, 3500.CrossrefGoogle Scholar

  • [35]

    J. Beckmann, M. Hesse, H. Poleschner, K. Seppelt, Angew. Chem. Int. Ed. 2007, 46, 8277.CrossrefGoogle Scholar

  • [36]

    J. Beckmann, P. Finke, S. Heitz, M. Hesse, Eur. J. Inorg. Chem. 2008, 1921.Google Scholar

  • [37]

    J. Beckmann, P. Finke, M. Hesse, B. Wettig, Angew. Chem. Int. Ed. 2008, 47, 9982.CrossrefGoogle Scholar

  • [38]

    J. Beckmann, J. Bolsinger, P. Finke, M. Hesse, Angew. Chem. Int. Ed. 2010, 49, 8030.CrossrefGoogle Scholar

  • [39]

    O. Mallow, M. A. Khanfar, M. Malischewski, P. Finke, M. Hesse, E. Lork, T. Augenstein, F. Breher, J. R. Harmer, N. V. Vasilieva, A. Zibarev, A. S. Bogomyakov, K. Seppelt, J. Beckmann, Chem. Sci. 2015, 6, 497.CrossrefGoogle Scholar

  • [40]

    J. Beckmann, J. Bolsinger, S. Mebs, Main Group Met. Chem. 2013, 36, 57 and references cited.Google Scholar

  • [41]

    D. J. Sandman, L. Li, S. Tripathy, J. C. Stark, L. A. Acampora, B. M. Foxman, Organometallics 1994, 13, 348.CrossrefGoogle Scholar

  • [42]

    F. H. Kruse, R. E. Marsh, J.D. McCullough, Acta Crystallogr. 1957, 10, 201.CrossrefGoogle Scholar

  • [43]

    G. Van den Bossche, M. R. Spirlet, O. Dideberg, L. Dupont, Acta Crystallogr. 1984, C40, 1011.Google Scholar

  • [44]

    G. Llabres, M. Baiwir, J. L. Piette, J. Appl. Crystallogr. 1974, 7, 299.CrossrefGoogle Scholar

  • [45]

    M. R. Spiret, G. van den Bossche, O. Dideberg, L. Dupont, Acta Crystallogr. 1979, B35, 1727.Google Scholar

  • [46]

    M. J. Turner, J. J. McKinnon, D. Jayatilaka, M. A. Spackman, CrystEngComm 2011, 13, 1804.CrossrefGoogle Scholar

  • [47]

    J. D. Dunitz, J. Bernstein, Acc. Chem. Res. 1995, 28, 193.CrossrefGoogle Scholar

  • [48]

    D.-K. Bučar, R. W. Lancaster, J. Bernstein, Angew. Chem. Int. Ed. 2015, 54, 6972.CrossrefGoogle Scholar

  • [49]

    T. Threlfall, Org. Proc. Res. Dev. 2003, 7, 1017.CrossrefGoogle Scholar

  • [50]

    A. L. Fuller, A. S. Scott-Hayward, Y. Li, M. Bühl, A. M. Z. Slawin, J. D. Woollins, J. Am. Chem. Soc. 2010, 132, 5799.CrossrefGoogle Scholar

  • [51]

    W.-W. du Mont, L. Lange, H. H. Karsch, K. Peters, E. M. Peters, H. G. von Schnering, Chem. Ber. 1988, 121, 11.CrossrefGoogle Scholar

  • [52]

    S. Salehzadeh, M. Saberinasab, Mol. Phys. 2016, 114, 3669.CrossrefGoogle Scholar

  • [53]

    R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Cambridge University Press, Oxford, UK, 1991.Google Scholar

  • [54]

    E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garciá, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.CrossrefGoogle Scholar

  • [55]

    J. Contreras-Garciá, R. A. Boto, F. Izquierdo-Ruiz, I. Reva, T. Woller, M. Alonso, Theor. Chem. Acc. 2016, 135, 242.CrossrefGoogle Scholar

  • [56]

    M. Kohout, Int. J. Quantum Chem. 2004, 97, 651.CrossrefGoogle Scholar

  • [57]

    M. Kohout, F. R. Wagner, Y. Grin, Theor. Chem. Acc. 2008, 119, 413.CrossrefGoogle Scholar

  • [58]

    A. Klamt, G. J. Schüürmann, J. Chem. Soc. Perkin Trans 2, 1993, 799.Google Scholar

  • [59]

    M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 5, 4249.CrossrefGoogle Scholar

  • [60]

    C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.CrossrefGoogle Scholar

  • [61]

    S. P. Thomas, P. R. Spackman, D. Jayatilaka, M. A. Spackman, J. Chem. Theory Comput. 2018, 14, 1614.CrossrefGoogle Scholar

  • [62]

    S. P. Thomas, M. A. Spackman, Aust. J. Chem. 2018, 71, 279.CrossrefGoogle Scholar

  • [63]

    M. A. Spackman, P. G. Byrom, Chem. Phys. Lett. 1997, 267, 215.CrossrefGoogle Scholar

  • [64]

    J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.Google Scholar

  • [65]

    The energies calculated to investigate the thermodynamics of the systems in this paper refer to zero Kelvin. At zero Kelvin, entropy can be neglected for the free energy according to ΔGHTΔS. However, to get some insight into the entropy based on the experimental geometries, we have estimated the entropies using a method by A. Ø. Madsen, S. Larsen, Angew. Chem. Int. Ed. 2007, 46, 8609, that was applied successfully, e.g. in: R. Pal, M. B. M. Reddy, B. Dinesh, P. Balaram, T. N. Guru Row, J. Phys. Chem. A 2014, 118, 9568. Normal-mode frequencies were estimated using a TLS analysis inside the program thma11 at the temperature of the diffraction experiment (173 K). For every normal-mode frequency value, an entropy is calculated upon projection to room temperature, and then summed up over all modes for a total entropy estimate of the crystal. Here, the β-form has the lowest entropy (167.55 J mol−1 K−1), but very similar to the γ-form (167.81 J mol−1 K−1), whereas the α-form has a significantly higher entropy (173.12 J mol−1 K−1).Google Scholar

  • [66]

    N. Walker, D. Stuart, Acta Crystallogr. 1983, A39, 158.Google Scholar

  • [67]

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.CrossrefGoogle Scholar

  • [68]

    K. Brandenburg, H. Putz, H. DIAMOND V3.1d, Crystal Impact GbR, 2006.Google Scholar

  • [69]

    Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.Google Scholar

  • [70]

    O. Mallow, J. Bolsinger, P. Finke, M. Hesse, Y.-S. Chen, A. Duthie, S. Grabowsky, P. Luger, S. Mebs, J. Beckmann, J. Am. Chem. Soc. 2014, 136, 10870.CrossrefGoogle Scholar

  • [71]

    D. Feller, J. Comp. Chem. 1996, 17, 1571.CrossrefGoogle Scholar

  • [72]

    S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456.CrossrefGoogle Scholar

  • [73]

    T. A. Keith, AIMAll (Version 15.05.18), TK Gristmill Software, Overland Park KS, USA, 2015 (http://aim.tkgristmill.com).

  • [74]

    G. Saleh, L. Lo Presti, C. Gatti, D. Ceresoli, J. Appl. Crystallogr. 2013, 46, 1513.CrossrefGoogle Scholar

  • [75]

    C. B. Hübschle, P. Luger, J. Appl. Crystallogr. 2006, 39, 901.CrossrefGoogle Scholar

  • [76]

    M. Kohout, DGrid, version 4.6. Radebeul, Germany, 2011.Google Scholar

  • [77]

    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, Int. J. Quantum Chem. 2014, 114, 1287.CrossrefGoogle Scholar

  • [78]

    C. Bartolomeo, C. M. Zicovich-Wilson, L. Valenzano, P. Ugliengo, CrystEngComm 2008, 10, 405.CrossrefGoogle Scholar

  • [79]

    J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin, J. Chem. Phys. 2005, 123, 174101.CrossrefGoogle Scholar

  • [80]

    F. H. Allen, I. J. Bruno, Acta Crystallogr. B 2010, 66, 380.CrossrefGoogle Scholar

  • [81]

    S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.CrossrefGoogle Scholar

  • [82]

    D. Jayatilaka, D. J. Grimwood, Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography, Springer, New York, 2003.Google Scholar

  • [83]

    M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017. http://hirshfeldsurface.net.

About the article

Received: 2018-02-19

Accepted: 2018-07-19

Published Online: 2018-08-28

Published in Print: 2018-09-25

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 233, Issue 9-10, Pages 707–721, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2077.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in