Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 234, Issue 10

Issues

Third-order nonlinear optical properties of three chlorinated thienyl chalcones derivatives: synthesis, structural determination and Hirshfeld surface analysis

Weng Zhun Ng
  • X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qin Ai Wong
  • X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tze Shyang Chia
  • X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. S. Chidan Kumar
  • Department of Chemistry, Vidya Vikas Institute of Engineering and Technology, Alanahalli, Mysuru 570028, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huey Chong Kwong / Ching Kheng Quah
  • Corresponding author
  • X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yip-Foo Win
  • Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shivaraj R. Maidur
  • Department of Physics, K.L.E. Institute of Technology, Opposite Airport, Gokul, Hubballi 580030, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Parutagouda Shankaragouda Patil
  • Department of Physics, K.L.E. Institute of Technology, Opposite Airport, Gokul, Hubballi 580030, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-27 | DOI: https://doi.org/10.1515/zkri-2019-0039

Abstract

Three chlorinated theinyl chalcone derivatives, namely (E)-1-(5-chlorothiophen-2-yl)-3-(4-(methylthio)phenyl)prop-2-en-1-one (I), (E)-1-(5-chlorothiophen-2-yl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (II) and (E)-1-(5-chlorothiophen-2-yl)-3-(2,3-dihydrobenzofuran-5-yl)prop-2-en-1-one (III), were synthesized and their crystal structures were determined by single-crystal X-ray diffraction analysis. Compounds I, II and III crystallize in the monoclinic space groups P 21/c (centrosymmetric), P 21/n (centrosymmetric) and Pc (non-centrosymmetric), respectively. In all three compounds, the molecules are in a relatively planar conformation and adopt a trans configuration with respect to the C=C double bond. The crystal packings are stabilized by weak hydrogen-bonds, π · · · π, C–H · · · π and C–Cl · · · π interactions. The intermolecular contacts and lattice energies were further analyzed by Hirshfeld surface analysis. The third-order nonlinear optical properties of these chalcone derivatives were investigated using the single beam Z-scan technique with a 5 mW continuous wave diode laser operating at 635 nm, where compound I showed the highest potential for optical application with its exclusive nonlinear refractive index and nonlinear susceptibility.

This article offers supplementary material which is provided at the end of the article.

Keywords: chlorinated thienyl chalcone; crystal structure; Hirshfeld surface analysis; non-linear optical; Z-scan

References

  • [1]

    W.-C. Chu, P.-Y. Bai, Z.-Q. Yang, D.-Y. Cui, Y.-G. Hua, Y. Yang, Q.-Q. Yang, E. Zhang, S. Qin, Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem. 2018, 143, 905.Web of ScienceCrossrefGoogle Scholar

  • [2]

    A. Modzelewska, C. Pettit, G. Achanta, N. E. Davidson, P. Huang, S. R. Khan, Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorgan. Med. Chem. 2006, 14, 3491.CrossrefGoogle Scholar

  • [3]

    M. Debarshi Kar, B. Sanjay Kumar, A. Vivek, Chalcone derivatives: anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017, 17, 3146.Web of ScienceGoogle Scholar

  • [4]

    K. L. Lahtchev, D. I. Batovska, S. P. Parushev, V. M. Ubiyvovk, A. A. Sibirny, Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur. J. Med. Chem. 2008, 43, 2220.Web of ScienceCrossrefGoogle Scholar

  • [5]

    C. Gopi, V. G. Sastry, M. D. Dhanaraju, Synthesis and spectroscopic characterisation of novel bioactive molecule of 3-(2-substituted)-1H-indol-3-yl)-1-(thiophen-2yl)prop-2-en-1-one chalcone derivatives as effective anti-oxidant and anti-microbial agents. Beni-Suef. Univ. J. Basic Appl. Sci. 2016, 5, 236.CrossrefGoogle Scholar

  • [6]

    B. Ganapayya, A. Jayarama, R. Sankolli, V. R. Hathwar, S. M. Dharmaprakash, Synthesis, growth, and characterization of a new NLO material 3-(2,3-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one. J. Mol. Struct. 2012, 1007, 175.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, Design of organic molecules with large two-photon absorption cross sections. Science 1998, 281, 1653.CrossrefGoogle Scholar

  • [8]

    M. Nagasawa, S. Miyata, E. Hanamura, H. Nakanishi, H. Nishihara, H. Sasabe, O. Kamigaito, M. Kawamura, Nonlinear Optics (Ed. S. Miyata) Elsevier, Amsterdam, 1992.Google Scholar

  • [9]

    D. R. Kanis, M. A. Ratner, T. J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 1994, 94, 195.CrossrefGoogle Scholar

  • [10]

    S. P. Karna, Electronic and nonlinear optical materials: the role of theory and modeling. J. Phys. Chem. A. 2000, 104, 4671.CrossrefGoogle Scholar

  • [11]

    C. S. Chidan Kumar, S. Raghavendra, T. S. Chia, S. Chandraju, S. M. Dharmaprakash, H.-K. Fun, C. K. Quah, Structure–property relation and third order nonlinear optical absorption study of a new organic crystal: 1-(3,4-dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one. Opt. Mater. 2015, 49, 279.Web of ScienceCrossrefGoogle Scholar

  • [12]

    H. C. Kwong, M. S. Rakesh, C. S. Chidan Kumar, R. Maidur Shivaraj, S. Patil Parutagouda, K. Quah Ching, Y.-F. Win, C. Parlak, S. Chandraju, Structure–property relation and third-order nonlinear optical studies of two new halogenated chalcones. Z. Kristallogr. 2018, 233, 349.Google Scholar

  • [13]

    J. Cosier, A. M. Glazer, A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Crystallogr. 1986, 19, 105.CrossrefGoogle Scholar

  • [14]

    Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. WI, USA 2012.Google Scholar

  • [15]

    G. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A. 2015, 71, 3.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    G. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015, 71, 3.Web of ScienceGoogle Scholar

  • [17]

    R. E. Rodriguez-Lugo, N. Urdaneta, B. Pribanic, V. R. Landaeta, The solid-state emissive chalcone (2E)-1-(5-chlorothiophen-2-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one. Acta Crystallogr. C. 2015, 71, 783.CrossrefGoogle Scholar

  • [18]

    M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm. 2009, 11, 19.Web of ScienceCrossrefGoogle Scholar

  • [19]

    M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17. 2017, University of Western Australia. Available at: http://hirshfeldsurface.net.

  • [20]

    M. A. Spackman, J. J. McKinnon, D. Jayatilaka, Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm. 2008, 10, 377.Web of ScienceGoogle Scholar

  • [21]

    S. P. Thomas, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theory Comput. 2018, 14, 1614.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 1989, 14, 955.CrossrefGoogle Scholar

  • [23]

    M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. V. Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Elect. 1990, 26, 760.CrossrefGoogle Scholar

  • [24]

    S. Jeyaram, T. Geethakrishnan, Third-order nonlinear optical properties of acid green 25 dye by Z-scan method. Opt. Laser Technol. 2017, 89, 179.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378.CrossrefGoogle Scholar

  • [26]

    Q. M. Ali, P. K. Palanisamy, Z-scan determination of the third-order optical nonlinearity of organic dye Nile Blue chloride. Mod. Phys. Lett. B. 2006, 20, 623.CrossrefGoogle Scholar

  • [27]

    S. R. Maidur, P. S. Patil, S. V. Rao, M. Shkir, S. M. Dharmaprakash, Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D-π-A type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1-one. Opt. Laser Technol. 2017, 97, 219.CrossrefGoogle Scholar

  • [28]

    K. Jamshidi-Ghaleh, S. Salmani, M. H. Majles Ara, Nonlinear responses and optical limiting behavior of fast green FCF dye under a low power CW He–Ne laser irradiation. Opt. Commun. 2007, 271, 5.Web of ScienceGoogle Scholar

About the article

Received: 2019-07-12

Accepted: 2019-09-12

Published Online: 2019-09-27

Published in Print: 2019-10-25


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 234, Issue 10, Pages 685–696, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2019-0039.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in