Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 234, Issue 5

Issues

Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion

Zahra Sayyar / Hoda Jafarizadeh Malmiri
  • Corresponding author
  • Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran, Tel.: +98-41-33459099, Fax: +98-41-33444355, E-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-27 | DOI: https://doi.org/10.1515/zkri-2018-2096

Abstract

Zinc oxide nanoparticles had been synthesized and encapsulated using Curcumin nanoemulsions, Zn(Cur)O NPs, under subcritical water conditions. The effects of temperature (120, 140 and 160 °C) and pH values of the reaction solution (4, 7 and 10) on the particle size, grain size, cristallinity, specific surface area, band gap, Urbach energy, morphology, photocatalytic activity and antibacterial properties of the prepared Zn(Cur)O NPs were evaluated using XRD, FT-IR, SEM, EDX and UV-Vis spectroscopy analysis. The obtained results indicate that the prepared spherical and rod shapes Zn(Cur)O NPs had a crystallite size distribution of 10–100 nm. Furthermore, the results reveal that most uniform Zn(Cur)O NPs with highest photocatalytic activity, quantum yield (0.161 mol·m−2 s−1), specific surface area (242 m2/g), minimum band gap (2.62 eV) and Urbach energy (0.125 meV) were formed at 160 °C and natural pH. The highest antibacterial activities against both Gram positive and negative bacteria strains, were achieved using the synthesized Zn(Cur)O at 160 °C and basic pH(10).

Keywords: Curcumin nanodispersions; kinetic study; photocatalytic activity; self-cleaning surfaces; ZnO nanoparticles

References

  • [1]

    S. Ghayempour, M. Montazer, M. M. Rad, Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr. Polym. 2016, 139, 232.Web of ScienceGoogle Scholar

  • [2]

    A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide – from synthesis to application: a review. Materials (Basel) 2014, 7, 2833.CrossrefGoogle Scholar

  • [3]

    B. A. Cakır, L. Budama, O. Topel, N. Hoda, Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications. Colloids Surf. A 2012, 414, 132.Web of ScienceCrossrefGoogle Scholar

  • [4]

    H. F. Moafi, A. F. Shojaie, M. A. Zanjanchi, Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films 2011, 519, 3641.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Z. Sayyar, A. A. Babaluo, J. R. Shahrouzi, Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray. Appl. Surf. Sci. 2015, 335, 1.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    S. Sood, A. Umar, S. K. Mehta, S. K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J. Colloid Interface Sci. 2015, 450, 213.Web of ScienceCrossrefGoogle Scholar

  • [7]

    H. Madan, S. C. Sharma, Udayabhanu, D. Suresh, Y. S. Vidya, H. Nagabhushana, H. Rajanaik, K. S. Anantharaju, S. C. Prashantha, P. Sadananda Maiya, Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim. Acta Part A 2016, 152, 404.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    S. S. Hassan, W. I. El Azab, H. R. Ali, M. S. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2015, 6, 45012.Web of ScienceGoogle Scholar

  • [9]

    P. Stradhar, M. Saha, Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J. Exp. Nanosci. 2016, 11, 314.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    A. Ochoa, J. Hernandez-Becerra, A. Cavazos-Garduño, E. Vernon-Carter, H. García, Preparation an characterization of curcumin nanoemulsions obtained bt thin film hydration emulsification and ultrasonication methods. Rev. Mex. Ing. Quim. 2016, 15, 79.Google Scholar

  • [11]

    S. S. Bansal, M. Goel, F. Aqil, M. V. Vadhanam, R. C. Gupta, Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev. Res. 2011, 4, 1158.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    S. Prasad, A. K. Tyagi, B. B. Aggarwal, Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    N. Anarjan, H. Jafarizadeh-Malmiri, I. A. Nehdi, H. M. Sbihi, C. P. Tan, Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique. Int. J. Nanomed. 2015, 10, 1109.Web of ScienceGoogle Scholar

  • [14]

    Y. Wang, Z. Lu, H. Wu, F. Lv, Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int. J. Food Microbio. 2009, 136, 71.CrossrefGoogle Scholar

  • [15]

    H. Su, F. Sun, J. Jia, H. He, A. Wang, G. Zhu, A highly porous medical metal–organic framework constructed from bioactive curcumin. Chem. Commun. 2015, 51, 5774.Web of ScienceCrossrefGoogle Scholar

  • [16]

    L. Zou, Food matrix effects on nutraceutical bioavailability: impact of protein on curcumin bioaccessibility and transformation in nanoemulsion delivery systems and excipient nanoemulsions. Food Biophys. 2016, 11, 142.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    J. Du,G. Zou, A novel microporous zinc (II) metal-organic framework with highly selectivity adsorption of CO2 over CH4. Inorg. Chem. Commun. 2016, 69, 20.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    R. N. Moussawi, D. Patra, Nanoparticle self-assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene, and chrysene by ZnO. Sci. Rep. 2016, 6, 24565.Web of ScienceCrossrefGoogle Scholar

  • [19]

    R. N. Moussawi, D. Patra, Modification of nanostructured ZnO surfaces with curcumin: fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv. 2016, 6, 17256.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    M. Torabfam, H. Jafarizadeh-Malmiri, Microwave-enhanced silver nanoparticle synthesis using chitosan biopolymer: optimization of the process conditions and evaluation of their characteristics. Green Process. Synth. 2018, 7, 530.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    N. S. Gonçalves, J. A. Carvalho, Z. M. Lima, J. M. Sasaki, Size – strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 2012, 72, 36.Web of ScienceCrossrefGoogle Scholar

  • [22]

    S. H. Kim, J. H. Koh, The microwave properties of Li doped 0.7 (Ba, Sr) TiO3−0.3 MgO thick film interdigital capacitors on the alumina substrates. Microelec. Eng. 2010, 87, 79.CrossrefGoogle Scholar

  • [23]

    H. M. Otte, Lattice parameter determinations with an X-ray spectrogoniometer by the Debye-Scherrer method and the effect of specimen condition. J. Appl. Phys. 1961, 32, 1536.CrossrefGoogle Scholar

  • [24]

    V. Kumar, Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating. J. Colloid Interface Sci. 2014, 428, 8.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Effect of heat treatment on physical properties of CdO films deposited by sol–gel method. Int. J. Hydrogen Energy 2009, 34, 5191.Web of ScienceCrossrefGoogle Scholar

  • [26]

    H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnology 2004, 15, 622.CrossrefGoogle Scholar

  • [27]

    R. K. Gangwar, G. B. Tomar, V. A. Dhumale, S. Zinjarde, R. B. Sharma, S. Datar, Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agri. Food Chem. 2013, 61, 9632.Google Scholar

  • [28]

    F. Kurniawansyah, R. Mammucari, N. R. Foster, Inhalable curcumin formulations by supercritical technology. Powder Technol. 2015, 284, 289.Web of ScienceCrossrefGoogle Scholar

  • [29]

    M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 2015, 26, 1294.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Y. Qian, J. Yao, M. Russel, K. Chen, X. Wang, Characterization of green synthesized nano-formulation (ZnO–A.vera) and their antibacterial activity against pathogens. Environ. Toxicol. Pharmacol. 2015, 39, 736.CrossrefWeb of ScienceGoogle Scholar

  • [31]

    R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, Photodynamic action of curcumin derived polymer modified ZnO nanocomposites. Mater. Res. Bull. 2012, 47, 3090.Web of ScienceCrossrefGoogle Scholar

  • [32]

    M. Caglar, Y. Caglar, S. Ilican, The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. J. Optoelectron. Adv. Mater. 2006, 8, 1410.Google Scholar

  • [33]

    M. Rauf, M. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13.CrossrefWeb of ScienceGoogle Scholar

  • [34]

    E. Pipelzadeh, A. A. Babaluo, M. Haghighi, A. Tavakoli, M. V. Derakhshan, A. K. Behnami, Silver doping on TiO2 nanoparticles using a sacrificial acid and its photocatalytic performance under medium pressure mercury UV lamp. Chem. Eng. J. 2009, 155, 660.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    H. Wang, L. Hao, P. Wang, M. Chen, S. Jiang, S. Jiang, Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids 2017, 63, 437.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-05-19

Accepted: 2018-12-02

Published Online: 2018-12-27

Published in Print: 2019-05-27


Funding Source: Iran Nanotechnology Initiative Council

Award identifier / Grant number: 139069

The completion of this research could not have been possible without the participation and assistance of the financial support of Sahand University of Technology (grant no. 30.17676). Also the authors are deeply grateful for the financial support made by Iran Nanotechnology Initiative Council (grant no. 139069).


Conflict of interest: The authors declare that they have no conflict of interest.


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 234, Issue 5, Pages 307–328, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2096.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in