Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Print + Online
See all formats and pricing
More options …
Volume 234, Issue 5

Issues

An average structure model of the intermediate phase between sodalite and cancrinite

Hilke Petersen
  • University of Bremen, FB2, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 7, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haishuang Zhao
  • Johannes Gutenberg University, Institute of Inorganic Chemistry and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lars Robben
  • Corresponding author
  • University of Bremen, FB2, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 7, 28359 Bremen, Germany
  • MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ute Kolb
  • Johannes Gutenberg University, Institute of Inorganic Chemistry and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thorsten M. Gesing
  • University of Bremen, FB2, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 7, 28359 Bremen, Germany
  • MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-14 | DOI: https://doi.org/10.1515/zkri-2018-2114

Abstract

Powder samples of the intermediate phase between sodalite and cancrinite (INT) have been synthesized hydrothermally. The formation of the INT phase was proved by both PXRD and TGA analysis and its stoichiometric composition was found to be |Na6.95(1)(CO3)0.48(2) (H2O)6.18(6)|[AlSiO4]6. The comparison of the intensity ratios of PXRD data with a SCXRD measurement indicates the formation of a comparable phase with the typical strong stacking disorder. The hexagonal lattice parameters with a=1266.3(2) pm and c=1586(1) pm and the unit cell setting were determined by Pawley fits. The average lattice and the stacking disorder along c axis could be confirmed by the reconstruction of three-dimensional ADT data. The average structure of INT was modeled considering only the combination of naturally existing (zeolitic) cages, restricted by the actual number of layers per unit cell. The possible combinations were further reduced by considering the amount of incorporated species. Through the comparison of simulated electron diffraction pattern to measured data the modeled framework could be confirmed. Using relative positions of the incorporated species in the natural cages as well as electron densities calculated by using only the framework of INT the positions of these species could be described.

This article offers supplementary material which is provided at the end of the article.

Keywords: automated diffraction tomography; intermediate phase; one-dimensional disorder; powder diffraction

References

  • [1]

    G. Hermeler, J. Buhl, W. Hoffmann, Catal. Today 1991, 8, 415.CrossrefGoogle Scholar

  • [2]

    E. Bonaccorsi, S. Nazzareni, Z. Kristallogr. – Cryst. Mater. 2015, 230, 345.Google Scholar

  • [3]

    R. X. Fischer, W. H. Baur, Z. Kristallogr. 2009, 224, 185.Google Scholar

  • [4]

    H. Petersen, L. Robben, M. Šehović, T. M. Gesing, Microp. Mesopor. Mater. 2017, 242, 144.CrossrefGoogle Scholar

  • [5]

    T. M. Gesing, J.-C. C. Buhl, Z. Kristallogr. NCS 2003, 218, 275.Google Scholar

  • [6]

    M. M. Murshed, T. M. Gesing, Z. Kristallogr. 2007, 222, 341.Google Scholar

  • [7]

    D. Taylor, C. M. B. Henderson, Phys. Chem. Miner. 1978, 2, 325.CrossrefGoogle Scholar

  • [8]

    M. T. Weller, J. Chem. Soc. Dalton. Trans. 2000, 4227.Google Scholar

  • [9]

    R. M. Barrer, D. E. W. Vaughan, J. Phys. Chem. Solids 1971, 32, 731.CrossrefGoogle Scholar

  • [10]

    G. D. Gatta, D. Comboni, M. Alvaro, P. Lotti, F. Cámara, M. C. Domeneghetti, Phys. Chem. Miner. 2014, 41, 373.CrossrefGoogle Scholar

  • [11]

    I. Hassan, Can. Mineral. 1996, 60, 949.Google Scholar

  • [12]

    G. D. Ventura, G. D. Gatta, G. J. Redhammer, F. Bellatreccia, A. Loose, G. C. Parodi, Phys. Chem. Miner. 2009, 36, 193.CrossrefGoogle Scholar

  • [13]

    G. D. Gatta, P. Lotti, Am. Mineral. 2016, 101, 253.CrossrefGoogle Scholar

  • [14]

    P. Lotti, Cancrinite-Group Minerals at Non-Ambient Conditions: A Model of the Elastic Behavior and Structure Evolution, 2013.Google Scholar

  • [15]

    E. Bonaccorsi, P. Ballirano, F. Cámara, Microp. Mesopor. Mater. 2012, 147, 318.CrossrefGoogle Scholar

  • [16]

    H. Petersen, L. Robben, T. M. Gesing, Microp. Mesopor. Mater. 2019, 274, 94.CrossrefGoogle Scholar

  • [17]

    E. A. Pobedimskaya, L. E. Terent’eva, A. N. Saphozhinkov, A. A. Kashaev, G. I. Dorokhova, Sov. Phys. Dokl. 1991, 36, 553.Google Scholar

  • [18]

    P. Ballirano, S. Merlino, E. Bonaccorsi, Can. Mineral. 1996, 34, 1021.Google Scholar

  • [19]

    P. Ballirano, E. Bonaccorsi, A. Maras, S. Merlino, Eur. J. Miner. 1997, 9, 21.Google Scholar

  • [20]

    P. Ballirano, E. Bonaccorsi, A. Maras, S. Merlino, Can. Mineral. 2000, 38, 657.CrossrefGoogle Scholar

  • [21]

    R. K. Rastsvetaeva, N. V Chukanov, A. G. Ivanova, Crystallogr. Reports 2009, 54, 195.CrossrefGoogle Scholar

  • [22]

    K. A. Rozenberg, A. N. Sapozhnikov, R. K. Rastsvetaeva, N. B. Bolotina, A. A. Kashaev, Crystallogr. Reports 2004, 49, 635.CrossrefGoogle Scholar

  • [23]

    E. Bonaccorsi, P. Orlandi, Eur. J. Mineral. 2003, 15, 1019.Google Scholar

  • [24]

    F. Cámara, F. Bellatreccia, G. Della Ventura, A. Mottana, Eur. J. Mineral. 2005, 17, 839.Google Scholar

  • [25]

    E. Bonaccorsi, Microp. Mesopor. Mater. 2004, 73, 129.CrossrefGoogle Scholar

  • [26]

    F. Cámara, F. Bellatreccia, G. Della Ventura, A. Mottana, L. Bindi, M. E. Gunter, M. Sebastiani, Am. Mineral. 2010, 95, 472.CrossrefGoogle Scholar

  • [27]

    F. Cámara, F. Bellatreccia, G. Della Ventura, M. E. Gunter, M. Sebastiani, A. Cavallo, Am. Mineral.2012, 97, 1494.CrossrefGoogle Scholar

  • [28]

    K. Hackbarth, T. Gesing, M. Fechtelkord, F. Stief, J. Buhl, Microp. Mesopor. Mater. 1999, 30, 347.CrossrefGoogle Scholar

  • [29]

    K. Hackbarth, M. Fechtelkord, J.-C. Buhl, React. Kinet. Catal. Lett. 1998, 65, 33.CrossrefGoogle Scholar

  • [30]

    C. Grader, J. C. Buhl, Microp. Mesopor. Mater. 2013, 171, 110.CrossrefGoogle Scholar

  • [31]

    J. C. Buhl, Thermochim. Acta 1991, 178, 19.CrossrefGoogle Scholar

  • [32]

    J. C. Buhl, Thermochim. Acta 1991, 189, 75.CrossrefGoogle Scholar

  • [33]

    U. Kolb, E. Mugnaioli, T. E. Gorelik, Cryst. Res. Technol. 2011, 46, 542.CrossrefGoogle Scholar

  • [34]

    E. Mugnaioli, T. Gorelik, U. Kolb, Ultramicroscopy 2009, 109, 758.CrossrefGoogle Scholar

  • [35]

    I. Andrusenko, Y. Krysiak, E. Mugnaioli, T. E. Gorelik, D. Nihtianova, U. Kolb, Acta Crystallogr. B 2015, 71, 349.CrossrefGoogle Scholar

  • [36]

    J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb, A. Corma, Science 2011, 333, 1131.CrossrefGoogle Scholar

  • [37]

    H. Zhao, Y. Krysiak, K. Hoffmann, B. Barton, L. Molina-Luna, R. B. Neder, H. J. Kleebe, T. M. Gesing, H. Schneider, R. X. Fischer, U. Kolb, J. Solid State Chem. 2017, 249, 114.CrossrefGoogle Scholar

  • [38]

    U. Kolb, T. Gorelik, C. Ku, M. T. Otten, D. Hubert, Ultramicroscopy 2007, 107, 507.CrossrefGoogle Scholar

  • [39]

    D. E. W. W. Vaughan, H. P. Yennawar, A. J. Perrotta, A. J. Benesi, Microp. Mesopor. Mater. 2009, 123, 274.CrossrefGoogle Scholar

  • [40]

    P. Krishna, D. Pandey, Close-Packed Structures, 2001st ed., University College, Cardiff Press, Wales University College, Cardiff, 1981.Google Scholar

  • [41]

    T. Proffen, R. B. Neder, J. Appl. Crystallogr. 1997, 30, 171.CrossrefGoogle Scholar

  • [42]

    Materials Studio. Accelrys Software Inc., San Diego, 2009.Google Scholar

  • [43]

    P. Oleynikov, Cryst. Res. Technol. 2011, 46, 569.CrossrefGoogle Scholar

  • [44]

    Y. I. Smolin, Y. F. Shepelev, I. K. Butikova, I. B. Kobyakov, Kristallografiya 1981, 26, 63.Google Scholar

  • [45]

    S. V Krivovichev, Microp. Mesopor. Mater. 2013, 171, 223.CrossrefGoogle Scholar

About the article

Received: 2018-07-04

Accepted: 2018-11-28

Published Online: 2018-12-14

Published in Print: 2019-05-27


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 234, Issue 5, Pages 351–361, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2114.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in