Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 234, Issue 5

Issues

Unique 3D framework formed by adding MIIO4 groups into high Sb/P ratio phosphatoantimonates

Wei-Long Zhang
  • Corresponding author
  • College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, P.R. China
  • State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China,
  • Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhen-Gang Guo
  • College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiang-Feng Guan
  • College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chinghwa Chen / Jiangang He
  • Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pei-Hui Luo
  • College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiao-Yan Li
  • College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Feng-Hua Ding / Wen-Dan Cheng
  • Corresponding author
  • State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China,
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-14 | DOI: https://doi.org/10.1515/zkri-2018-2137

Abstract

Explorations on a mixed metal phosphatoantimonate system led to the discovery of two new anhydrous phosphatoantimonates, namely, Cs4MSb6P4O28 (M=Mg, Zn), which represent the first examples of quinary AI – MII –SbV – PV– O systems. Single-crystal structure analysis reveals that the two title compounds crystallize in the tetragonal space group I41/a (No. 88). Their structures feature complicated 3D frameworks with interesting tunnel structures comprised of corner sharing MO4 tetrahedra, SbO6 octahedra and PO4 tetrahedra, with the Cs+ cations sitting in the tunnels to balance the valence. Optical reflectance spectrum measurements show that these two compounds are insulators with band gaps of about 4.5 eV.

This article offers supplementary material which is provided at the end of the article.

Keywords: 3D architecture; phosphatoantimonates; Sb/P ratio; single crystal; solid-state syntheses

References

  • [1]

    Y.-C. Liao, C.-H. Lin, S.-L. Wang, Direct white light phosphor: a porous zinc gallophosphate with tunable yellow-to-white luminescence. J. Am. Chem. Soc. 2005, 127, 9986.CrossrefGoogle Scholar

  • [2]

    C. C. Lin, Z. R. Xiao, G.-Y. Guo, T.-S. Chan, R.-S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: collocated characteristic analysis and theoretical calculations. J. Am. Chem. Soc. 2010, 132, 3020.CrossrefGoogle Scholar

  • [3]

    J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, Z. Xia, Eu2+ Site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc. 2018, 140, 9730.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, D. Y. Jeon, Luminescence properties and energy transfer of site-sensitive Ca6-x-yMgx-z (PO4)4:Euy2+,Mnz2+ phosphors and their application to near-UV LED-based white LEDs. Inorg. Chem. 2009, 48, 11525.CrossrefGoogle Scholar

  • [5]

    D. Geng, M. Shang, Y. Zhang, H. Lian, J. Lin, Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A=Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors. Inorg. Chem. 2013, 52, 13708.Web of ScienceCrossrefGoogle Scholar

  • [6]

    S. Zhao, X. Yang, Y. Yang, X. Kuang, F. Lu, P. Shan, Z. Sun, Z. Lin, M. Hong, J. Luo, Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J. Am. Chem. Soc. 2018, 140, 1592.Web of ScienceCrossrefGoogle Scholar

  • [7]

    N. Yu, V. V. Klepov, H. Schlenz, D. Bosbach, P. M. Kowalski, Y. Li, E. V. Alekseev, Cation-dependent structural evolution in A2Th(TVO4)2 (A=Li, Na, K, Rb, Cs; T=P and As) series. Cryst. Growth Des. 2017, 17, 1339.CrossrefGoogle Scholar

  • [8]

    J. B. Felder, S. Calder, H.-C. Zur Loye, Retention of a paramagnetic ground state at low temperatures in a family of structurally related UIV phosphates. Inorg. Chem. 2018, 57, 9286.CrossrefGoogle Scholar

  • [9]

    X. Zhang, H. Wu, Y. Wang, X. Dong, S. Han, S. Pan, Application of the dimensional reduction formalism to Pb12[Li2(P2O7)2(P4 O13)2](P4O13): a phosphate containing three types of isolated P–O groups. Inorg. Chem. 2016, 55, 7329.CrossrefGoogle Scholar

  • [10]

    H. Yu, J. Young, H. Wu, W. Zhang, J. M. Rondinelli, P. S. Halasyamani, M4Mg4(P2O7)3 (M=K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chem. Mater. 2017, 29, 1845.Web of ScienceCrossrefGoogle Scholar

  • [11]

    A. Lachgar, S. Deniard-Courant, Y. Piffard, Preparation and crystal structure of K2SbPO6. J. Solid State Chem. 1986, 63, 409.CrossrefGoogle Scholar

  • [12]

    Y. Piffard, S. Oyetola, S. Courant, A. Lachgar, Crystal structure of KSbP2O8. J. Solid State Chem. 1985, 60, 209.CrossrefGoogle Scholar

  • [13]

    D. Guyomard, C. Pagnoux, J. J. ZahLetho, A. Verbaere, Y. Piffard, Preparation and crystal structure of Na3SbO(PO4)2. J. Solid State Chem. 1991, 90, 367.CrossrefGoogle Scholar

  • [14]

    V. Radha, K. Ramaswamy, G. Ravi, N. R. Munirathnam, M. Vithal, Effect of Cation/Anion Co-doping on the photocatalytic performance of Na3SbO(PO4)2. Z. Anorg. Allg. Chem. 2015, 641, 935.Web of ScienceGoogle Scholar

  • [15]

    Y. Piffard, A. Lachgar, M. Tournoux, Structure cristalline du phosphatoantimonate K3Sb3P2O14. J. Solid State Chem. 1985, 58, 253.CrossrefGoogle Scholar

  • [16]

    Y. Piffard, A. Lachgar, M. Tournoux, Crystal structure of KSb2PO8. Mater. Res. Bull. 1985, 20, 715.CrossrefGoogle Scholar

  • [17]

    M. P. Crosnier, D. Guyomard, A. Verbaere, Y. Piffard, Preparation and crystal structure of CsSb2PO8. Eur. J. Solid State Inorg. Chem. 1989, 26, 529.Google Scholar

  • [18]

    Y. Piffard, A. Lachgar, M. Tournoux, A potassium phosphatoantimonate with a three dimensional framework: K5Sb5P2O20. Mater. Res. Bull. 1986, 21, 1231.CrossrefGoogle Scholar

  • [19]

    C. H. Sudhakar Reddy, K. Sreenu, J. R. Reddy, A. Hari Padmasri, G. Ravi, M. Vithal, Preparation, characterization and photocatalytic studies of Cu2+, Sn2+ and N3- substituted K5Sb5P2O20. J. Chem. Sci. 2016, 128, 663.Web of ScienceCrossrefGoogle Scholar

  • [20]

    J. G. Decaillon, Y. Andres, J. C. Abbe, M. Tournoux, M+/H+ ion exchange behavior of the phosphoantimonic acids HnSbnP2O3n+5·xH2O (n =1, 3) for M=Cs and other alkali metal ions. Solid State Ionics. 1998, 112, 143.CrossrefGoogle Scholar

  • [21]

    C. S. Griffith, V. Luca, J. Cochrane, J. V. Hanna, Lanthanide/actinide ion-exchange and structural investigations of the layered phosphatoantimonic acid, H3Sb3P2O14·ZH2O. Micropor. Mesopor. Mat. 2008, 111, 387.CrossrefGoogle Scholar

  • [22]

    E. Wang, M. Greenblatt, Ionic conductivities of ion-exchanged alkali metal phosphatoantimonate (A2Sb3P2O14, A=sodium, potassium, rubidium), A5Sb5P2O20 (A =lithium, sodium, potassium, rubidium), and partially substituted potassium phosphatoantimonato niobate or potassium phosphatoantimonato tantalate (K5Sb5-xMxP2O20, M=niobium, tantalum). Chem. Mater. 1991, 3, 703.Google Scholar

  • [23]

    E. Wang, M. Greenblatt, Ionic conductivity of potassium phosphatoantimonates and some of their ion-exchanged analogs. Chem. Mater. 1991, 3, 542.CrossrefGoogle Scholar

  • [24]

    I. L. Botto, A. C. Garcia, Crystallographic data and vibrational spectrum of K2SbAsO6. Mater. Res. Bull. 1989, 24, 1431.CrossrefGoogle Scholar

  • [25]

    P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 1931, 12, 593.Google Scholar

  • [26]

    W. M. Wendlandt, H. G. Hecht, Reflectance Spectroscopy, Interscience, New York, 1966.Google Scholar

  • [27]

    W. T. Robinson, G. M. Sheldrick, in Crystallographic Computing 4: Techniques and New Technologies, (Eds. N. W. Isaacs and M. R. Taylor) IUCr/Oxford University Press, p. 366, 1988.Google Scholar

  • [28]

    G. M. Sheldrick, SHELXTL, Crystallographic Software Package, Version 5.1, Bruker-AXS: Madison, WI, 1998.Google Scholar

  • [29]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, D64, 112.Google Scholar

  • [30]

    A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7.CrossrefGoogle Scholar

  • [31]

    Y. An, S. Feng, Y. Xu, R. Xu, Hydrothermal synthesis and characterization of a new potassium phosphatoantimonate, K8Sb8P2O29·8H2O. Chem. Mater. 1996, 8, 356.CrossrefGoogle Scholar

  • [32]

    I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244.Google Scholar

About the article

Received: 2018-10-08

Accepted: 2018-12-02

Published Online: 2018-12-14

Published in Print: 2019-05-27


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 234, Issue 5, Pages 301–306, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2137.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in