Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 14, 2018

Unique 3D framework formed by adding MIIO4 groups into high Sb/P ratio phosphatoantimonates

  • Wei-Long Zhang EMAIL logo , Zhen-Gang Guo , Xiang-Feng Guan , Chinghwa Chen , Jiangang He , Pei-Hui Luo , Xiao-Yan Li , Feng-Hua Ding and Wen-Dan Cheng EMAIL logo

Abstract

Explorations on a mixed metal phosphatoantimonate system led to the discovery of two new anhydrous phosphatoantimonates, namely, Cs4MSb6P4O28 (M=Mg, Zn), which represent the first examples of quinary AI – MII –SbV – PV– O systems. Single-crystal structure analysis reveals that the two title compounds crystallize in the tetragonal space group I41/a (No. 88). Their structures feature complicated 3D frameworks with interesting tunnel structures comprised of corner sharing MO4 tetrahedra, SbO6 octahedra and PO4 tetrahedra, with the Cs+ cations sitting in the tunnels to balance the valence. Optical reflectance spectrum measurements show that these two compounds are insulators with band gaps of about 4.5 eV.

Acknowledgements

This investigation was based on work supported by the National Natural Science Foundation of China under project 21101156, the State Key Laboratory of Structure Chemistry (No. 20150016), Oversea study scholarship under Fujian Education Department, Outstanding youth of colleges and universities of Department of Education, Fujian Province Natural Science Foundation for Youths (No.2016J05109) and Fujian Education Department (No. JK2015056).

References

[1] Y.-C. Liao, C.-H. Lin, S.-L. Wang, Direct white light phosphor: a porous zinc gallophosphate with tunable yellow-to-white luminescence. J. Am. Chem. Soc.2005, 127, 9986.10.1021/ja0512879Search in Google Scholar PubMed

[2] C. C. Lin, Z. R. Xiao, G.-Y. Guo, T.-S. Chan, R.-S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: collocated characteristic analysis and theoretical calculations. J. Am. Chem. Soc.2010, 132, 3020.10.1021/ja9092456Search in Google Scholar PubMed

[3] J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, Z. Xia, Eu2+ Site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc.2018, 140, 9730.10.1021/jacs.8b06021Search in Google Scholar PubMed

[4] K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, D. Y. Jeon, Luminescence properties and energy transfer of site-sensitive Ca6-x-yMgx-z (PO4)4:Euy2+,Mnz2+ phosphors and their application to near-UV LED-based white LEDs. Inorg. Chem.2009, 48, 11525.10.1021/ic900809bSearch in Google Scholar PubMed

[5] D. Geng, M. Shang, Y. Zhang, H. Lian, J. Lin, Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A=Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors. Inorg. Chem.2013, 52, 13708.10.1021/ic402305xSearch in Google Scholar PubMed

[6] S. Zhao, X. Yang, Y. Yang, X. Kuang, F. Lu, P. Shan, Z. Sun, Z. Lin, M. Hong, J. Luo, Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J. Am. Chem. Soc.2018, 140, 1592.10.1021/jacs.7b12518Search in Google Scholar PubMed

[7] N. Yu, V. V. Klepov, H. Schlenz, D. Bosbach, P. M. Kowalski, Y. Li, E. V. Alekseev, Cation-dependent structural evolution in A2Th(TVO4)2 (A=Li, Na, K, Rb, Cs; T=P and As) series. Cryst. Growth Des.2017, 17, 1339.10.1021/acs.cgd.6b01741Search in Google Scholar

[8] J. B. Felder, S. Calder, H.-C. Zur Loye, Retention of a paramagnetic ground state at low temperatures in a family of structurally related UIV phosphates. Inorg. Chem.2018, 57, 9286.10.1021/acs.inorgchem.8b01284Search in Google Scholar PubMed

[9] X. Zhang, H. Wu, Y. Wang, X. Dong, S. Han, S. Pan, Application of the dimensional reduction formalism to Pb12[Li2(P2O7)2(P4 O13)2](P4O13): a phosphate containing three types of isolated P–O groups. Inorg. Chem.2016, 55, 7329.10.1021/acs.inorgchem.6b01273Search in Google Scholar PubMed

[10] H. Yu, J. Young, H. Wu, W. Zhang, J. M. Rondinelli, P. S. Halasyamani, M4Mg4(P2O7)3 (M=K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chem. Mater.2017, 29, 1845.10.1021/acs.chemmater.7b00167Search in Google Scholar

[11] A. Lachgar, S. Deniard-Courant, Y. Piffard, Preparation and crystal structure of K2SbPO6. J. Solid State Chem.1986, 63, 409.10.1016/0022-4596(86)90198-2Search in Google Scholar

[12] Y. Piffard, S. Oyetola, S. Courant, A. Lachgar, Crystal structure of KSbP2O8. J. Solid State Chem.1985, 60, 209.10.1016/0022-4596(85)90114-8Search in Google Scholar

[13] D. Guyomard, C. Pagnoux, J. J. ZahLetho, A. Verbaere, Y. Piffard, Preparation and crystal structure of Na3SbO(PO4)2. J. Solid State Chem.1991, 90, 367.10.1016/0022-4596(91)90154-ASearch in Google Scholar

[14] V. Radha, K. Ramaswamy, G. Ravi, N. R. Munirathnam, M. Vithal, Effect of Cation/Anion Co-doping on the photocatalytic performance of Na3SbO(PO4)2. Z. Anorg. Allg. Chem.2015, 641, 935.Search in Google Scholar

[15] Y. Piffard, A. Lachgar, M. Tournoux, Structure cristalline du phosphatoantimonate K3Sb3P2O14. J. Solid State Chem.1985, 58, 253.10.1016/0022-4596(85)90242-7Search in Google Scholar

[16] Y. Piffard, A. Lachgar, M. Tournoux, Crystal structure of KSb2PO8. Mater. Res. Bull.1985, 20, 715.10.1016/0025-5408(85)90150-3Search in Google Scholar

[17] M. P. Crosnier, D. Guyomard, A. Verbaere, Y. Piffard, Preparation and crystal structure of CsSb2PO8. Eur. J. Solid State Inorg. Chem.1989, 26, 529.Search in Google Scholar

[18] Y. Piffard, A. Lachgar, M. Tournoux, A potassium phosphatoantimonate with a three dimensional framework: K5Sb5P2O20. Mater. Res. Bull.1986, 21, 1231.10.1016/0025-5408(86)90052-8Search in Google Scholar

[19] C. H. Sudhakar Reddy, K. Sreenu, J. R. Reddy, A. Hari Padmasri, G. Ravi, M. Vithal, Preparation, characterization and photocatalytic studies of Cu2+, Sn2+ and N3- substituted K5Sb5P2O20. J. Chem. Sci.2016, 128, 663.10.1007/s12039-016-1041-0Search in Google Scholar

[20] J. G. Decaillon, Y. Andres, J. C. Abbe, M. Tournoux, M+/H+ ion exchange behavior of the phosphoantimonic acids HnSbnP2O3n+5·xH2O (n =1, 3) for M=Cs and other alkali metal ions. Solid State Ionics.1998, 112, 143.10.1016/S0167-2738(98)00227-6Search in Google Scholar

[21] C. S. Griffith, V. Luca, J. Cochrane, J. V. Hanna, Lanthanide/actinide ion-exchange and structural investigations of the layered phosphatoantimonic acid, H3Sb3P2O14·ZH2O. Micropor. Mesopor. Mat.2008, 111, 387.10.1016/j.micromeso.2007.08.028Search in Google Scholar

[22] E. Wang, M. Greenblatt, Ionic conductivities of ion-exchanged alkali metal phosphatoantimonate (A2Sb3P2O14, A=sodium, potassium, rubidium), A5Sb5P2O20 (A =lithium, sodium, potassium, rubidium), and partially substituted potassium phosphatoantimonato niobate or potassium phosphatoantimonato tantalate (K5Sb5-xMxP2O20, M=niobium, tantalum). Chem. Mater.1991, 3, 703.10.1021/cm00016a026Search in Google Scholar

[23] E. Wang, M. Greenblatt, Ionic conductivity of potassium phosphatoantimonates and some of their ion-exchanged analogs. Chem. Mater.1991, 3, 542.10.1021/cm00015a034Search in Google Scholar

[24] I. L. Botto, A. C. Garcia, Crystallographic data and vibrational spectrum of K2SbAsO6. Mater. Res. Bull. 1989, 24, 1431.10.1016/0025-5408(89)90153-0Search in Google Scholar

[25] P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys.1931, 12, 593.Search in Google Scholar

[26] W. M. Wendlandt, H. G. Hecht, Reflectance Spectroscopy, Interscience, New York, 1966.Search in Google Scholar

[27] W. T. Robinson, G. M. Sheldrick, in Crystallographic Computing 4: Techniques and New Technologies, (Eds. N. W. Isaacs and M. R. Taylor) IUCr/Oxford University Press, p. 366, 1988.Search in Google Scholar

[28] G. M. Sheldrick, SHELXTL, Crystallographic Software Package, Version 5.1, Bruker-AXS: Madison, WI, 1998.Search in Google Scholar

[29] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, D64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[30] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr.2003, 36, 7.10.1107/S0021889802022112Search in Google Scholar

[31] Y. An, S. Feng, Y. Xu, R. Xu, Hydrothermal synthesis and characterization of a new potassium phosphatoantimonate, K8Sb8P2O29·8H2O. Chem. Mater.1996, 8, 356.10.1021/cm950182+Search in Google Scholar

[32] I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst.1985, B41, 244.10.1107/S0108768185002063Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2137).


Received: 2018-10-08
Accepted: 2018-12-02
Published Online: 2018-12-14
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2018-2137/html
Scroll to top button