Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 234, Issue 6

Issues

The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3

Natalia V. Zubkova / Igor V. Pekov / Evgeny V. Sereda / Vasiliy O. Yapaskurt / Dmitry Yu. Pushcharovsky
Published Online: 2019-02-23 | DOI: https://doi.org/10.1515/zkri-2018-2124

Abstract

The crystal structure of hibbingite, natural γ-Fe2+2Cl(OH)3, a mineral of the atacamite group, was studied on a sample from the Oktyabr’sky mine, Norilsk district, Siberia, Russia. The structure was solved by direct methods based on single crystal X-ray diffraction data and refined to R=2.07% [520 reflections with I>2σ(I)]. The mineral is isostructural with atacamite and is orthorhombic, Pnma, a=6.3373(2), b=6.9892(2), c=9.3457(3) Å, V=413.95(3) Å3, Z=4. The structure contains Fe(1)(OH)4Cl2 octahedra which share Cl–O(1) edges to form chains running along the b axis and cross-linked by the chains of Fe(2)(OH)5Cl octahedra sharing O(2)–O(2) edges and running along the a axis.

This article offers supplementary material which is provided at the end of the article.

Keywords: atacamite group mineral; crystal structure; hibbingite; iron hydroxychloride; Norilsk; single-crystal X-ray diffraction data

References

  • [1]

    B. Saini-Eidukat, H. Kucha, H. Keppler, Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for oxidation of Fe-bearing compounds and transport of metals. Am. Mineral. 1994, 79, 555.Google Scholar

  • [2]

    P. Williams, P. Downes, J. Grice, D. Hibbs, A. Kampf, P. Leverett, T. Malcherek, J. Schlüter, M. Sciberras, M. Welch, A nomenclature for the Atacamite Family. 21st General Meeting of the International Mineralogical Association, Johannesburg, 2014, 376.Google Scholar

  • [3]

    B. Saini-Eidukat, N. S. Rudashevsky, A. G. Polozov, Evidence for hibbingite – kempite solid solution. Mineral. Mag. 1998, 62, 251.CrossrefGoogle Scholar

  • [4]

    H. Brasseur, J. Toussaint, Structure cristalline de l’atacamite. Bull. Soc. R. Sci. Liege 1942, 11, 555.Google Scholar

  • [5]

    A. F. Wells, The crystal structure of atacamite and the crystal chemistry of cupric compounds. Acta Crystallogr. 1949, 2, 175.CrossrefGoogle Scholar

  • [6]

    J. B. Parise, B. G. Hyde, The structure of Atacamite and its relationships to spinel. Acta Crystallogr. 1986, C42, 1277.Google Scholar

  • [7]

    X. G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, H. Yamada, K. Nishikubo, C. N. Xu, Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite Cu2Cl(OH)3. Phys. Rev. Ser. 3. B – Condensed Matter 2005, 71, 174404-1.Google Scholar

  • [8]

    B. P. Onac, H. S. Effenberger, N. C. Collins, J. B. Kearns, R. C. Breban, Revisiting three minerals from Cioclovina Cave (Romania). Int. J. Speleol. 2011, 40, 99.Web of ScienceCrossrefGoogle Scholar

  • [9]

    H. Kubozono, X.-G. Zheng, H. Yamada, C.-N. Xu, Structural analysis for novel materials exhibiting exotic properties. II. A structural study of new geometrically frustrated spin systems M2Cl(OH)3. Reports of the faculty of science and engineering, Saga University, 2006, 35, 13.Google Scholar

  • [10]

    Agilent Technologies. CrysAlisPro Software system, version 1.171.37.35, Agilent Technologies UK Ltd, Oxford, UK, 2014.Google Scholar

  • [11]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [12]

    O. C. Gagné, F. C. Hawthorne, Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562.Web of ScienceGoogle Scholar

  • [13]

    N. E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192.Google Scholar

  • [14]

    T. Malcherek, J. Schlüter, Cu3MgCl2(OH)6 and the bond-valence parameters of the OH–Cl bond. Acta Crystallogr. 2007, B63, 157.Web of ScienceGoogle Scholar

  • [15]

    P. C. Burns, F. C. Hawthorne, Mixed-ligand Cu2+Φ6 octahedra in minerals: observed stereochemistry and Hartree–Fock calculations. Can. Mineral. 1995, 33, 1177.Google Scholar

  • [16]

    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272.Web of ScienceCrossrefGoogle Scholar

  • [17]

    M. E. Fleet, The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallogr. 1975, B31, 183.Google Scholar

  • [18]

    J. D. Bernal, D. R. Dasgupta, A. L. Mackay, The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals 1959, 4, 15.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Natalia V. Zubkova, Faculty of Geology, Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia, Fax: 007-495-9328889


Received: 2018-08-18

Accepted: 2019-02-12

Published Online: 2019-02-23

Published in Print: 2019-05-27


Funding Source: Russian Science Foundation

Award identifier / Grant number: 14-17-00048

We thank Gerald Giester and anonymous referee for valuable comments and Evgeny Antipov for the editorial work. This study was supported by the Russian Science Foundation, grant no. 14-17-00048.


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 234, Issue 6, Pages 379–382, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2124.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in