Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 230, Issue 6


Dinuclear zinc(II) complex with tris(2-aminoethyl)amine ligand: synthesis, structure and properties

Güneş Süheyla Kürkçüoğlu
  • Corresponding author
  • Faculty of Arts and Sciences, Department of Physics, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Okan Zafer Yeşilel
  • Faculty of Arts and Sciences, Department of Chemistry, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Onur Şahin
  • Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elvan Sayın
  • Graduate School of Natural and Applied Sciences, Physics, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Orhan Büyükgüngör
  • Faculty of Arts and Sciences, Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-14 | DOI: https://doi.org/10.1515/zkri-2014-1814


The dinuclear complex tris(2-aminoethyl)aminezinc(II)-μ-cyanothreecyanozincate(II) hemihydrate, [Zn(tren)Zn(μ-CN)(CN)3]·0.5H2O (1) (tren = tris(2-aminoethyl)amine), has been synthesized and characterized by spectral (FT-IR and Raman), elemental, thermal analysis (TG, DTG and DTA) as well as single crystal X-ray diffraction techniques. The asymmetric unit is composed of two Zn(II) ions, one tren ligand, four cyanide ligands and a half crystal water molecule which is situated at the special position. Zn1 ion exhibits tetrahedral coordination geometry with four carbon atoms of four cyanide ligands. Zn2 ion is five-coordinated by five nitrogen atoms from one tren and one cyanide ligands in a trigonal bipyramid coordination geometry. The cyanide nitrogen is in the axial position. Adjacent dinuclear units are connected by hydrogen bonding interactions to form three dimensional network. The decomposition reaction takes place in the temperature range 30–700 °C in the static air atmosphere.

This article offers supplementary material which is provided at the end of the article.

Keywords: cyanide complex; dinuclear complex; tetracyanozincate(II); tris(2-aminoethyl)amine; zinc(II) complex


  • [1]

    K. Dunbar, R. A. Heintz, Chemistry of transition metal cyanide compounds: Modern perspectives. Prog. Inorg. Chem. 1997, 45, 283.Google Scholar

  • [2]

    A. G. Sharpe, Chemistry of cyano complexes of the transition metals. Academic Press, London, 1976.Google Scholar

  • [3]

    B. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4′″-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546.Google Scholar

  • [4]

    T. Iwamoto, Supramolecular chemistry in cyanometallate system. Compr. Supramol. Chem. 1996, 6, 643.Google Scholar

  • [5]

    L. Ouyang, P. M. Aguiar, R. J. Batchelor, S. Kroeker, D. B. Leznoff, A paramagnetic Cu(I)/Cu(II)/Zn(II) coordination polymer with multiple CN-binding modes and its solid-state NMR characterization. Chem. Commun. 2006, 7, 744.CrossrefGoogle Scholar

  • [6]

    R. Curtis, C. Ratcliffe, J. Ripmeester, Structure and ordering in metal cyanide lattices: the use of doubly labelled cyanide (13C-15N) to simplify the 13C MAS NMR spectrum. J. Chem. Soc. Chem. Commun. 1992, 24, 1800.CrossrefGoogle Scholar

  • [7]

    H. Yuge, T. Iwamoto, Crystal structures of catena-[diligatocadmium(II) tetra-μ-cyanocadmate(II)] host clathrates: diamminecadmium(II) tetracyanocadmate (II)-benzene(1/2), diamminecadmium(II) tetracyanocadmate(II)-aniline(1/2), ethylenediaminecadmium(II) tetracyanocadmate(II)-aniline(1/2), and a novel type bis(aniline)cadmium(II) tetracyanocadmat(II)-aniline(2/1). J. Inclusion Phenom. Macrocyclic Chem. 1992, 14, 217.Google Scholar

  • [8]

    M. Kajňaková, J. Černák, V. Kavečanský, F. Gérard, T. Papageorgiou, M. Orendáč, A. Orendáčová, A. Feher, Magneto-structural correlations. Rietveld refinement of the three-dimensional crystal structure of Mn(en)Ni(CN)4 (en= ethylenediamine) and magnetic interactions through the [Ni(CN)4]2- anion. Solid State Sci. 2006, 8, 203.Google Scholar

  • [9]

    J. Cernak, I. Potocnak, J. Chomic, M. Dunaj-Jurco, Structure of catena-poly[bis (ethylenediamine)zinc(II)-μ-cyano-dicyanonickel(II)-μ-cyano]. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1990, 46, 1098.CrossrefGoogle Scholar

  • [10]

    S. W. Zhang, D. G. Fu, W. Y. Sun, Z. Hu, K. B. Yu, W. X. Tang, A New bimetallic assembly magnet [{Ni(tn)2}5{FeIII(CN)6}3]n(ClO4)n· 2.5nH2O (tn= trimethylenediamine) with a novel 3-D tunnel structure. Inorg. Chem. 2000, 39, 1142.CrossrefGoogle Scholar

  • [11]

    J. Černák, J. Lipkowski, Two polymorphs of Cu(tn)Ni(CN)4 containing tetracyanonickellate anions with triple bridging function: Preparation and crystallographic characterization. Monatsh. Chem. Chem. Mon. 1999, 130, 1195.Google Scholar

  • [12]

    H. Zhang, J. Cai, X. L. Feng, H. Y. Sang, J. Z. Liu, X. Y. Li, L. N. Ji, Assembly chemistry of a cadmium(II) complex with cyanometalate anions [Fe(CN)5NO]2–, [Pd(CN)4]2– and [Pt(CN)6]2–. Polyhedron 2002, 21, 721.CrossrefGoogle Scholar

  • [13]

    M. Noshin, M. Salavati-Niasari, TiO2 nanoparticle aggregations prepared by nitro-functionalized tripodal ligand as promising candidates for dye-sensitized solar cells. Mater. Sci. Semicond. Process. 2014, 27, 702.Web of ScienceGoogle Scholar

  • [14]

    J. Atwood, W. Steed, Supramolecular Chemistry, 6th ed., Wiley and Sons, New York, 2009.Google Scholar

  • [15]

    B. J. Holliday, C. A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Edi. 2001, 40, 2022.CrossrefGoogle Scholar

  • [16]

    B. Moulton, M. J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629.CrossrefPubMedGoogle Scholar

  • [17]

    H. D. Lutz, Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct. 2003, 646, 227.Google Scholar

  • [18]

    L. J. Prins, D. N. Reinhoudt, P. Timmerman. Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed. 2001, 40, 2382.CrossrefGoogle Scholar

  • [19]

    G. M. Sheldrick, Acta Cryst. A 2008, 64, 112.Google Scholar

  • [20]

    Stoe&Cie, in Stoe&Cie, Darmstadt, Germany, 2002.Google Scholar

  • [21]

    C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood, Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466.Web of ScienceCrossrefGoogle Scholar

  • [22]

    L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837.CrossrefGoogle Scholar

  • [23]

    J. K. Nag, P. K. Santra, C. Sinha, F. L. Liao, T. H Lu, Synthesis, spectral and electrochemical studies of 2-(arylazo)heterocycle complexes of zinc(II). Single-crystal X-ray structure of [Zn(papm)Cl2·CH3OH] (papm=2-(phenylazo)pyrimidine). Polyhedron 2001, 20, 2253.CrossrefGoogle Scholar

  • [24]

    Y. Guo, R. Weiss, R. Boese, M. Epple, Synthesis, structural characterization and thermochemical reactivity of tris(ethylenediamine)zinc tetracyanozincate, a precursor for nanoscale ZnO. Thermochim. Acta 2006, 446, 101.CrossrefGoogle Scholar

  • [25]

    J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Edit. 1995, 34, 1555.CrossrefGoogle Scholar

  • [26]

    J. Yin, C. Li, X. Chen, Q. Luo, Infrared spectra and normal coordinate analysis of a model compound for superoxide dismutase. Spectrochim. Acta A 1997, 53, 2209.CrossrefGoogle Scholar

  • [27]

    L. H. Jones, Vibrational spectrum and structure of metal cyanide complexes in the solid state-V: K2Zn(CN)4, K2Cd(CN)4 and K2Hg(CN)4. Spectrochim. Acta 1961, 17, 188.CrossrefGoogle Scholar

  • [28]

    D. M. Adams, R. E. Christopher, Low-frequency Infrared and single-crystal Raman spectra of dipotassium tetracyanozincate(II). Inorg. Chem. 1973, 12, 1609.CrossrefGoogle Scholar

  • [29]

    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, PartB: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed., Wiley and Sons, NewYork, 1997.Google Scholar

About the article

Corresponding author: Güneş Süheyla Kürkçüoğlu, Faculty of Arts and Sciences, Department of Physics, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey, Phone: +90 222 2393750, Fax: +90 222 2393578, E-mail:

Received: 2014-10-30

Accepted: 2015-02-11

Published Online: 2015-03-14

Published in Print: 2015-06-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 6, Pages 407–412, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1814.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in