Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 233, Issue 5

Issues

Dengue virus 3 NS5 methyltransferase domain: expression, purification, crystallization and first structural data from microcrystalline specimens

Alexandros Valmas
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stavroula Fili
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikos Nikolopoulos
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Spiliopoulou
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalini Christopoulou
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fotini Karavassili
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christos Kosinas
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konstantinos Bastalias
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eleftheria Rosmaraki
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julie Lichiére
  • Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d’Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew Fitch / Detlef Beckers / Thomas Degen / Nicolas Papageorgiou
  • Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d’Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Canard
  • Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d’Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Coutard
  • Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d’Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irene Margiolaki
  • Corresponding author
  • Section of Genetics, Cell Biology and Development, University of Patras, Department of Biology, GR-26500, Patras, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-02 | DOI: https://doi.org/10.1515/zkri-2017-2091

Abstract

Flavivirus infections often provoke life-threatening diseases of epidemic magnitudes, thus extensive research is currently directed towards the development of efficient vaccines and approved antiviral compounds. We present here the expression, purification, crystallization and preliminary X-ray diffraction analysis of one of the components of the flavivirus replication complex, the non-structural protein 5 (NS5) mRNA methyltransferase (MTase) domain, from an emerging pathogenic flavivirus, dengue virus 3 (DEN3). Polycrystalline precipitates of DEN3 NS5 MTase, suitable for X-ray powder diffraction (XRPD) measurements, were produced in the presence of PEG 8000 (25–32.5% (w/v)), 0.1 M Tris-Amino, in a pH range from 7.0 to 8.0. A polymorph of orthorhombic symmetry (space group: P21212, a=61.9 Å, b=189.6 Å, c=52.4 Å) was identified via XRPD. These results are the first step towards the complete structural determination of this molecule via XRPD and a parallel demonstration of the applicability of the method.

Keywords: dengue virus 3; methyltransferase; non structural protein 5; powder diffraction; structural virology

References

  • [1]

    T. Solomon, M. Mallewa, Dengue and other emerging flaviviruses. J. Infect. 2001, 42, 104.CrossrefGoogle Scholar

  • [2]

    D. H. Simpson, Arboviruses, in Manson’s Tropical Diseases (Ed. G. Cook), Saunders, London, 1996.Google Scholar

  • [3]

    G. N. Malavige, S. Fernando, D. J. Fernando, S. L. Seneviratne, Dengue viral infections. Postgrad. Med. J. 2004, 80, 588.CrossrefGoogle Scholar

  • [4]

    M. G. Guzman, S. B. Halstead, H. Artsob, P. Buchy, J. Farrar, D. J. Gubler, E. Hunsperger, A. Kroeger, H. S. Margolis, E. Martínez, M. B. Nathan, J. L. Pelegrino, C. Simmons, S. Yoksan, R. W. Peeling, Dengue: a continuing global threat. Nat. Rev. Microbiol. 2010, 8, S7.Web of ScienceCrossrefGoogle Scholar

  • [5]

    S. J. Wu, G.-G. Vogel, W. Sun, J. R. Mascola, E. Brachtel, R. Putvatana, M. K. Louder, L. Filgueira, M. A. Marovich, H. K. Wong, A. Blauvelt, G. S. Murphy, M. L. Robb, B. L. Innes, D. L. Birx, C. G. Hayes, S. S. Frankel. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 2000, 6, 816.CrossrefGoogle Scholar

  • [6]

    K. Jessie, M. Y. Fong, S. Devi, S. K. Lam, K. T. Wong, Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis. 2004, 189, 1411.CrossrefGoogle Scholar

  • [7]

    J. F. Siler, M. W. Hall, A. Hitchens, Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention. Phil. J. Sci. 1926, 29, 1.Google Scholar

  • [8]

    M. G. Guzman, G. P. Kouri, J. Bravo, M. Soler, S. Vazquez, L. Morier, Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am. J. Trop. Med. Hyg. 1990, 42, 179.CrossrefGoogle Scholar

  • [9]

    M. G. Guzman, G. Kouri, L. Valdes, J. Bravo, M. Alvarez, S. Vazques, I. Delgado, S. B. Halstead, Epidemiologic studies on Dengue in Santiago De Cuba, 1997. Am. J. Epidemiol. 2000, 152, 793.CrossrefGoogle Scholar

  • [10]

    E. G. Westaway, M. A. Brinton, S. Ya. Gaidamovich, M. C. Horzinek, A. Igarashi, L. Kääriäinen, D. K. Lvov, J. S. Porterfield, P. K. Russell, D. W. Trent, Flaviviridae. Intervirology 1985, 24, 183.CrossrefGoogle Scholar

  • [11]

    A. Cahour, B. Falgout, C. J. Lai, Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J. Virol. 1992, 66, 1535.Google Scholar

  • [12]

    P. Després, M. P. Frenkiel, V. Deubel, Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology 1993, 196, 209.CrossrefGoogle Scholar

  • [13]

    B. Coutard, E. Decroly, C. Li, A. Sharff, J. Lescar, G. Bricogne, K. Barral, Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res. 2014, 106, 61.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    H. Hannemann, P. Y. Sung, H. C. Chiu, A. Yousuf, J. Bird, S. P. Lim, A. D. Davidson, Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J. Biol. Chem. 2013, 288, 22621.Web of ScienceCrossrefGoogle Scholar

  • [15]

    R. Perera, R. J. Kuhn, Structural proteomics of dengue virus. Curr. Opin. Microbiol. 2008, 11, 369.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    H. P. Dong, D. C. Chang, X. P. Xie, Y. X. Toh, K. Y. Chung, G. Zou, J. Lescar, S. P. Lim, P. Y. Shi, Biochemical and genetic characterization of dengue virus methyltransferase. Virology 2010, 405, 568.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, B. Canard, An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 2002, 21, 2757.CrossrefGoogle Scholar

  • [18]

    T. L. Yap, T. Xu, Y. L. Chen, H. Malet, M. P. Egloff, B. Canard, S. G. Vasudevan, J. Lescar, Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-Angstrom resolution. J. Virol. 2007, 81, 4753.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    Y. Zhao, T. S. Soh, J. Zheng, K. W. Chan, W. W. Phoo, C. C. Lee, M. Y. Tay, K. Swaminathan, T. C. Cornvik, S. P. Lim, P. Y. Shi, J. Lescar, S. G. Vasudevan, D. Luo, A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog. 2015, 11, e1004682.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    F. Benmansour, I. Trist, B. Coutard, E. Decroly, G. Querat, A. Brancale, K. Barral, Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur. J. Med. Chem. 2017, 125, 865.Web of ScienceCrossrefGoogle Scholar

  • [21]

    M. Norrman, K. Ståhl, G. Schluckebier, S. Al-Karadaghi, Characterization of insulin microcrystals using powder diffraction and multivariate data analysis. J. Appl. Crystallogr. 2006, 39, 391.CrossrefGoogle Scholar

  • [22]

    I. Collings, Y. Watier, M. Giffard, S. Dagogo, R. Kahn, F. Bonneté, J. P. Wright, A. N. Fitch, I. Margiolaki, Polymorphism of microcrystalline urate oxidase from Aspergillus flavus. Acta Crystallogr. 2010, D66, 539.Web of ScienceGoogle Scholar

  • [23]

    N. Papageorgiou, Y. Watier, L. Saunders, B. Coutard, V. Lantez, E. A. Gould, A. N. Fitch, J. P. Wright, B. Canard, I. Margiolaki, Preliminary insights into the non-structural protein 3 macro domain of the Mayaro virus by powder diffraction. Z. Kristallogr. 2010, 225, 576.Google Scholar

  • [24]

    F. Karavassili, A. E. Giannopoulou, E. Kotsiliti, L. Knight, M. Norrman, G. Schluckebier, L. Drube, A. N. Fitch, J. P. Wright, I. Margiolaki, Structural studies of human insulin cocrystallized with phenol or resorcinol via powder diffraction. Acta Crystallogr. 2012, D68, 1632.Web of ScienceGoogle Scholar

  • [25]

    A. Valmas, K. Magiouf, S. Fili, M. Norrman, G. Schluckebier, D. Beckers, T. Degen, J. Wright, A. Fitch, F. Gozzo, A. E. Giannopoulou, F. Karavassili, I. Margiolaki, Novel crystalline phase and first-order phase transitions of human insulin complexed with two distinct phenol derivatives. Acta Crystallogr. 2015, D71, 819.Web of ScienceGoogle Scholar

  • [26]

    S. Fili, A. Valmas, M. Norrman, G. Schluckebier, D. Beckers, T. Degen, J. Wright, A. Fitch, F. Gozzo, A. E. Giannopoulou, F. Karavassili, I. Margiolaki, Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol. IUCrJ. 2015, 2, 534.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    S. Fili, A. Valmas, M. Christopoulou, M. Spiliopoulou, N. Nikolopoulos, J. Lichiére, S. Logotheti, F. Karavassili, E. Rosmaraki, A. Fitch, J. P. Wright, D. Beckers, T. Degen, G. Nénert, R. Hilgenfeld, N. Papageorgiou, B. Canard, B. Coutard, I. Margiolaki, Coxsackievirus B3 protease 3C: expression, purification, crystallization and preliminary structural insights. Acta Crystallogr. F 2016, 72, 877.Web of ScienceCrossrefGoogle Scholar

  • [28]

    I. Margiolaki, J. P. Wright, Powder crystallography on macromolecules. Acta Crystallogr. 2007, A64, 169.Web of ScienceGoogle Scholar

  • [29]

    F. Karavassili, I. Margiolaki, Macromolecular powder diffraction: ready for genuine biological problems. Protein Pept. Lett. 2016, 23, 232.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    S. Basso, A. N. Fitch, G. C. Fox, I. Margiolaki, J. P. Wright, High-throughput phase-diagram mapping via powder diffraction: a case study of HEWL versus pH. Acta Crystallogr. 2005, D61, 1612.Google Scholar

  • [31]

    I. Margiolaki, J. P. Wright, M. Wilmanns, A. N. Fitch, N. Pinotsis, Second SH3 domain of ponsin solved from powder diffraction. J. Am. Chem. Soc. 2007, 129, 11865.Web of ScienceCrossrefGoogle Scholar

  • [32]

    I. Margiolaki, A. E. Giannopoulou, J. P. Wright, L. Knight, M. Norrman, G. Schluckebier, A. N. Fitch, R. B. Von Dreele, High-resolution powder X-ray data reveal the T6 hexameric form of bovine insulin. Acta Crystallogr. 2013, D69, 978.Web of ScienceGoogle Scholar

  • [33]

    R. B. Von Dreele. Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J. Appl. Crystallogr. 1999, 32, 1084.CrossrefGoogle Scholar

  • [34]

    F. Hofmeister. Zur Lehre von der Wirkung der Salze – Zweite Mittheilung.-About the science of the effect of salts. Arch. Exp. Pathol. Phar. 1888, 24, 247.CrossrefGoogle Scholar

  • [35]

    A. Fitch, The high resolution powder diffraction beam line at ESRF. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 133.CrossrefGoogle Scholar

  • [36]

    A. Boultif, D. Louër, Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 1991, 24, 987.CrossrefGoogle Scholar

  • [37]

    W. I. F. David, K. Shankland, J. Van De Streek, E. Pidcock, W. D. S. Motherwell, J. C. Cole, DASH: a program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr. 2006, 39, 910.CrossrefGoogle Scholar

  • [38]

    G. S. Pawley, Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357.CrossrefGoogle Scholar

  • [39]

    J. P. Wright, Extraction and use of correlated integrated intensities with powder diffraction data. Z. Kristallogr. 2004, 219, 791.Google Scholar

  • [40]

    B. W. Matthews, Solvent content of protein crystals. J. Mol. Biol. 1968, 33, 491.CrossrefGoogle Scholar

  • [41]

    K. A. Kantardjieff, B. Rupp. Matthews’ coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals. Protein Sci. 2003, 12, 1865.CrossrefGoogle Scholar

  • [42]

    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori. On the number of statistically independent observations in a powder diffraction pattern. J. Appl. Crystallogr. 1995, 28, 738.CrossrefGoogle Scholar

  • [43]

    W. I. F. David. On the equivalence of the Rietveld method and the correlated integrated intensities method in powder diffraction. J. Appl. Crystallogr. 2004, 37, 621.CrossrefGoogle Scholar

  • [44]

    R. B. Von Dreele, Protein crystal structure analysis from high-resolution X-ray powder-diffraction data. Methods Enzymol. 2003, 368, 254.CrossrefGoogle Scholar

  • [45]

    I. Margiolaki, J. P. Wright, A. N. Fitch, G. C. Fox, R. B. Von Dreele, Synchrotron X-ray powder diffraction study of Turkey egg-white Lysozyme. Acta Crystallogr. 2005, D61, 423.Google Scholar

  • [46]

    R. B. Von Dreele, Binding of N-acetylglucosamine oligosaccharides to hen egg-white lysozyme: a powder diffraction study. Acta Crystallogr. 2005, D61, 22.Google Scholar

  • [47]

    D. Beckers, T. Degen, G. Nénert, S. Saslis, S. Logotheti, F. Karavassili, A. Valmas, I. Margiolaki, Humidity-induced phase transitions of HEW lysozyme investigated by microcrystalline powder diffraction on a laboratory system. Acta Crystallogr. 2015, A71, s510.Google Scholar

  • [48]

    B. Coutard, K. Barral, J. Lichière, B. Selisko, B. Martin, W. Aouadi, O. M. Lombardia, F. Debart, J. J. Vasseur, J. C. Guillemot, B. Canard, E. Decroly, The Zika virus methyltransferase: structure and functions for drug design perspectives. J. Virol. 2017, 91, e02202.Google Scholar

About the article

Received: 2017-07-25

Accepted: 2017-09-25

Published Online: 2017-11-02

Published in Print: 2018-05-24


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 233, Issue 5, Pages 309–316, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2017-2091.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in