Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Ahead of print

Issues

Synthesis and structural variety of first Mn and Bi selenites and selenite chlorides

Vadim M. Kovrugin
  • Corresponding author
  • Department of Crystallography, St. Petersburg State University, 199034 St. Petersburg, Russian Federation
  • Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181 CNRS, Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’ASCQ, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie Colmont
  • Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181 CNRS, Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’ASCQ, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oleg I. Siidra
  • Department of Crystallography, St. Petersburg State University, 199034 St. Petersburg, Russian Federation
  • Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, 184200 Apatity, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry O. Charkin
  • Inorganic Chemistry Division, Department of Chemistry, Moscow State University, GSP-1, 119991 Moscow, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Almaz Aliev
  • Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181 CNRS, Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’ASCQ, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey V. Krivovichev
  • Department of Crystallography, St. Petersburg State University, 199034 St. Petersburg, Russian Federation
  • Kola Science Center, Russian Academy of Sciences, 184209 Apatity, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Mentré
  • Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181 CNRS, Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’ASCQ, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-16 | DOI: https://doi.org/10.1515/zkri-2018-2088

Abstract

Single crystals of new Mn2[Bi2O](SeO3)4 (I), MnBi(SeO3)2Cl (II), MnIIMnIII(SeO3)2Cl (III), Mn5(SeO3)2Cl6 (IV), and Mn4(Mn5,Bi)(SeO3)8Cl5 (V) have been synthesized by chemical vapour transport and hydrothermal methods. They have been structurally characterized by single crystal X-ray diffraction analysis. The compounds II–V are the first Mn selenite chlorides, while the I, II and V compounds are the first Bi-containing Mn oxoselenites. Structural relationships of the new phases with other compounds are discussed. An overview of the mixed-ligand MnOmCln polyhedra in inorganic compounds is given.

This article offers supplementary material which is provided at the end of the article.

Keywords: bismuth; crystal structure; manganese; mixed-ligand coordination; selenites; single crystal XRD

References

  • [1]

    A. Choudhury, U. Kumar, C. N. R. Rao, Three-dimensional organically templated open-framework transition metal selenites. Angew. Chem. Int. Ed. 2002, 41, 158.CrossrefGoogle Scholar

  • [2]

    S. V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I. G. Tananaev, B. F. Myasoedov, Nanoscale tubules in uranyl selenates. Angew. Chem. Int. Ed. Engl. 2005, 44, 1134.CrossrefGoogle Scholar

  • [3]

    L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900.CrossrefGoogle Scholar

  • [4]

    V. M. Kovrugin, M. Colmont, C. Terryn, S. Colis, O. I. Siidra, S. V. Krivovichev, O. Mentré, pH-controlled pathway and systematic hydrothermal phase diagram for elaboration of synthetic lead nickel selenites. Inorg. Chem. 2015, 54, 2425.CrossrefGoogle Scholar

  • [5]

    S. Y. Song, D. W. Lee, K. M. Ok, Rich structural chemistry in scandium selenium/tellurium oxides: mixed-valent selenite–selenates, Sc2(SeO3)2(SeO4) and Sc2(TeO3)(SeO3)(SeO4), and ternary tellurite, Sc2(TeO3)3. Inorg. Chem. 2014, 53, 7040.CrossrefGoogle Scholar

  • [6]

    P. S. Berdonosov, E. S. Kuznetsova, V. A. Dolgikh, Transition metal selenite halides: a fascinating family of magnetic compounds. Crystals 2018, 8, 159.CrossrefGoogle Scholar

  • [7]

    A. Aliev, V. M. Kovrugin, M. Colmont, C. Terryn, M. Huvé, O. I. Siidra, S. V. Krivovichev, O. Mentré, Revised bismuth chloroselenite system: evidence of a noncentrosymmmetric structure with a giant unit cell. Cryst. Growth Des. 2014, 14, 3026.CrossrefGoogle Scholar

  • [8]

    V. M. Kovrugin, M. Colmont, O. I. Siidra, V. V. Gurzhiy, S. V. Krivovichev, O. Mentré, Pathways for synthesis of new selenium-containing oxo-compounds: chemical vapor transport reactions, hydrothermal techniques and evaporation method. J. Cryst. Growth 2017, 457, 307.CrossrefGoogle Scholar

  • [9]

    D. O. Charkin, E. V. Nazarchuk, S. Y. Stefanovich, E. B. Djangurazov, A. I. Zadoya, O. I. Siidra, Polar BaCl(ClO4)·H2O layered chloride perchlorate. Inorg. Chem. Commun. 2017, 84, 174.CrossrefGoogle Scholar

  • [10]

    V. M. Kovrugin, M. Colmont, O. I. Siidra, O. Mentré, A. Al-Shuray, V. V. Gurzhiy, S. V. Krivovichev, Oxocentered Cu(ii) lead selenite honeycomb lattices hosting Cu(i)Cl2 groups obtained by chemical vapor transport reactions. Chem. Commun. 2015, 51, 9563.CrossrefGoogle Scholar

  • [11]

    V. M. Kovrugin, M. Colmont, O. Mentré, O. I. Siidra, S. V. Krivovichev, Dimers of oxocentred [OCu4]6+ tetrahedra in two novel copper selenite chlorides, K[Cu3O](SeO3)2Cl and Na2[Cu7O2](SeO3)4Cl4, and related minerals and inorganic compounds. Mineral. Mag. 2016, 80, 227.CrossrefGoogle Scholar

  • [12]

    V. M. Kovrugin, S. V. Krivovichev, O. Mentré, M. Colmont, [NaCl][Cu(HSeO3)2], NaCl-intercalated Cu(HSeO3)2: synthesis, crystal structure and comparison with related compounds. Z. Kristallogr. 2015, 230, 573.Google Scholar

  • [13]

    P. S. Berdonosov, O. Janson, A. V Olenev, S. V. Krivovichev, H. Rosner, V. A. Dolgikh, A. A. Tsirlin, Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X=Se, Te. Dalton Trans. 2013, 42, 9547.CrossrefGoogle Scholar

  • [14]

    O. Janson, A. A. Tsirlin, E. S. Osipova, P. S. Berdonosov, A. V. Olenev, V. A. Dolgikh, H. Rosner, CaCu2(SeO3)2Cl2: spin-1/2 Heisenberg chain compound with complex frustrated interchain couplings. Phys. Rev. B 2011, 83, 144423.CrossrefGoogle Scholar

  • [15]

    D. I. Badrtdinov, E. S. Kuznetsova, V. Y. Verchenko, P. S. Berdonosov, V. A. Dolgikh, V. V. Mazurenko, A. A. Tsirlin, Magnetism of coupled spin tetrahedra in ilinskite-type KCu5O2(SeO3)2Cl3. Sci. Rep. 2018, 8, 2379.CrossrefGoogle Scholar

  • [16]

    P. S. Berdonosov, E. S. Kuznetsova, V. A. Dolgikh, A. V. Sobolev, I. A. Presniakov, A. V. Olenev, B. Rahaman, T. Saha-Dasgupta, K. V. Zakharov, E. A. Zvereva, O. S. Volkova, A. N. Vasiliev, Crystal structure, physical properties, and electronic and magnetic structure of the spin S=5/2 zigzag chain compound Bi2Fe(SeO3)2OCl3. Inorg. Chem. 2014, 53, 5830.CrossrefGoogle Scholar

  • [17]

    M. M. Markina, K. V. Zakharov, E. A. Zvereva, R. S. Denisov, P. S. Berdonosov, V. A. Dolgikh, E. S. Kuznetsova, A. V. Olenev, A. N. Vasiliev, Static and dynamic magnetic properties of two synthetic francisites Cu3La(SeO3)2O2X (X=Br and Cl). Phys. Chem. Miner. 2017, 44, 277.CrossrefGoogle Scholar

  • [18]

    E. Constable, S. Raymond, S. Petit, E. Ressouche, F. Bourdarot, J. Debray, M. Josse, O. Fabelo, H. Berger, S. DeBrion, V. Simonet, Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl. Phys. Rev. B 2017, 96, 014413.CrossrefGoogle Scholar

  • [19]

    V. Gnezdilov, Y. Pashkevich, P. Lemmens, V. Kurnosov, P. Berdonosov, V. Dolgikh, E. Kuznetsova, V. Pryadun, K. Zakharov, A. Vasiliev, Lattice and magnetic instabilities in Cu3Bi(SeO3)2O2X (X=Br, Cl). Phys. Rev. B 2017, 96, 115144.CrossrefGoogle Scholar

  • [20]

    H. C. Wu, K. D. Chandrasekhar, J. K. Yuan, J. R. Huang, J.-Y. Lin, H. Berger, H. D. Yang, Anisotropic spin-flip-induced multiferroic behavior in kagome Cu3Bi(SeO3)2O2Cl. Phys. Rev. B 2017, 95, 125121.CrossrefGoogle Scholar

  • [21]

    D. A. Prishchenko, A. A. Tsirlin, V. Tsurkan, A. Loidl, A. Jesche, V. G. Mazurenko, Antiferroelectric instability in the kagome francisite Cu3Bi(SeO3)2O2X (X=Cl, Br). Phys. Rev. B 2017, 95, 064102.CrossrefGoogle Scholar

  • [22]

    K. V. Zakharov, E. A. Zvereva, M. M. Markina, M. I. Stratan, E. S. Kuznetsova, S. F. Dunaev, P. S. Berdonosov, V. A. Dolgikh, A. V. Olenev, S. A. Klimin, L. S. Mazaev, M. A. Kashchenko, M. A. Ahmed, A. Banerjee, S. Bandyopadhyay, A. Iqbal, B. Rahaman, T. Saha-Dasgupta, A. N. Vasiliev, Magnetic, resonance, and optical properties of Cu3Sm(SeO3)2O2Cl: a rare-earth francisite compound. Phys. Rev. B 2016, 94, 054401.CrossrefGoogle Scholar

  • [23]

    K. V. Zakharov, E. A. Zvereva, P. S. Berdonosov, E. S. Kuznetsova, V. A. Dolgikh, L. Clark, C. Black, P. Lightfoot, W. Kockelmann, Z. V. Pchelkina, S. V. Streltsov, O. S. Volkova, A. N. Vasiliev, Thermodynamic properties, electron spin resonance, and underlying spin model in Cu3Y(SeO3)2O2Cl. Phys. Rev. B 2014, 90, 214417.CrossrefGoogle Scholar

  • [24]

    H. C. Wu, W. J. Tseng, P. Y. Yang, K. D. Chandrasekhar, H. Berger, H. D. Yang, Anisotropic pressure effects on the Kagome Cu3Bi(SeO3)2O2Cl metamagnet. J. Phys. D: Appl. Phys. 2017, 50, 265002.CrossrefGoogle Scholar

  • [25]

    V. M. Kovrugin, E. E. Gordon, E. E. Kasapbasi, M.-H. Whangbo, M. Colmont, O. I. Siidra, S. Colis, S. V. Krivovichev, O. Mentré, Bonding scheme, hydride character, and magnetic paths of (HPO3)2− versus (SeO3)2− building units in solids. J. Phys. Chem. C 2016, 120, 1650.CrossrefGoogle Scholar

  • [26]

    S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, S. K. Filatov, Anion-centered tetrahedra in inorganic compounds. Chem. Rev. 2013, 113, 6459.CrossrefGoogle Scholar

  • [27]

    A. Aliev, J. Olchowka, M. Colmont, E. Capoen, C. Wickleder, O. Mentré, New [PbBi2O4][Bi2O2]Cl2 and [PbnBi10–nO13][Bi2O2]nCl4+n series by association of sizable subunits: relationship with Arppe’s compound Bi24O31Cl10 and luminescence properties. Inorg. Chem. 2013, 52, 8427.CrossrefGoogle Scholar

  • [28]

    M. Lü, A. Aliev, J. Olchowka, M. Colmont, M. Huvé, C. Wickleder, O. Mentré, Multidimensional open-frameworks: combinations of one-dimensional channels and two-dimensional layers in novel Bi/M oxo-chlorides. Inorg. Chem. 2014, 53, 528.CrossrefGoogle Scholar

  • [29]

    M. S. Kozin, A. Aliev, M. Colmont, O. Mentré, O. I. Siidra, S. V. Krivovichev, Novel bismuth oxophosphate halides [Bi8O8][BiO2](PO4)2X (X=Cl, Br) based on oxocentered 2D blocks and their relationships to the Aurivillius phases. J. Solid State Chem. 2013, 199, 56.CrossrefGoogle Scholar

  • [30]

    M.-L. Liang, C.-L. Hu, F. Kong, J.-G. Mao, BiFSeO3: an excellent SHG material designed by aliovalent substitution. J. Am. Chem. Soc. 2016, 138, 9433.CrossrefGoogle Scholar

  • [31]

    L. Geng, Q. Li, C.-Y. Meng, K. Dai, H.-Y. Lu, C.-S. Lin, W.-D. Cheng, BaBi(SeO3)2Cl: a new polar material showing high second-harmonic generation efficiency enhanced by constructive alignment of chloride ions. J. Mater. Chem. C 2015, 3, 12290.CrossrefGoogle Scholar

  • [32]

    A. Aliev, M. Huvé, S. Colis, M. Colmont, A. Dinia, O. Mentré, Two-dimensional antiferromagnetism in the [Mn3+xO7][Bi4O4.5−y] compound with a maple-leaf lattice. Angew. Chem. Int. Ed. 2012, 51, 9393.CrossrefGoogle Scholar

  • [33]

    C. C. Chou, C. L. Huang, S. Mukherjee, Q. Y. Chen, H. Sakurai, A. A. Belik, E. Takayama-Muromachi, H. D. Yang, Multiple magnetic transitions in multiferroic BiMnO3. Phys. Rev. B 2009, 80, 184426.CrossrefGoogle Scholar

  • [34]

    M. Wildner, Crystal structure of Mn(II)Mn(III)2O(SeO3)3. J. Solid State Chem. 1994, 113, 252.CrossrefGoogle Scholar

  • [35]

    O. Rademacher, H. Göbel, H. Oppermann, Crystal structure of bismuth selenite, Bi2(SeO3)3. Z. Kristallogr. NCS 2000, 215, 339.Google Scholar

  • [36]

    Κ. G. Keramidas, G. P. Voutsas, P. I. Rentzeperis, The crystal structure of BiOCl. Z. Kristallogr. Cryst. Mater. 1993, 205, 35.Google Scholar

  • [37]

    D. O. Charkin, R. A. Kayukov, K. A. Zagidullin, O. I. Siidra, Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides. Solid State Sci. 2017, 64, 109.CrossrefGoogle Scholar

  • [38]

    S. A. Ibragimov, P. S. Berdonosov, V. A. Dolgikh, D. Q. Huong, H. Oppermann, Crystal structure and SHG characterization of γ-BiSeO3Cl. Inorg. Mater. 2002, 38, 1291.CrossrefGoogle Scholar

  • [39]

    G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, C71, 3.Google Scholar

  • [40]

    N. E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Crystallogr. B 1991, B47, 192.Google Scholar

  • [41]

    S. V. Krivovichev, Derivation of bond-valence parameters for some cation-oxygen pairs on the basis of empirical relationships between r o and b. Z. Kristallogr. 2012, 227, 575.Google Scholar

  • [42]

    J. Geb, M. Jansen, Bi2AuO5 and Bi4Au2O9, two novel ternary oxoaurates. J. Solid State Chem. 1996, 122, 364.CrossrefGoogle Scholar

  • [43]

    A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188.CrossrefGoogle Scholar

  • [44]

    H. Xiang, C. Lee, H.-J. Koo, X. Gong, M.-H. Whangbo, Magnetic properties and energy-mapping analysis. Dalton Trans. 2013, 42, 823.CrossrefGoogle Scholar

  • [45]

    H. Effenberger, The Bi(III)-selenite (Bi2O)Cu(SeO3)3·H2O. J. Alloys Comp. 1998, 281, 152.CrossrefGoogle Scholar

  • [46]

    J. Wontcheu, T. Schleid, Tb2Se2O7: terbium(III) oxide oxoselenate(IV) according to Tb2O[SeO3]2 with a “lone-pair” channel structure. Z. Anorg. Allg. Chem. 2002, 628, 1941.CrossrefGoogle Scholar

  • [47]

    J. Wontcheu, T. Schleid, Tb3O2Cl[SeO3]2 and Tb5O4Cl3[SeO3]2: oxide chloride oxoselenates(IV) of trivalent terbium with “lone-pair” channel or layer structures. Z. Anorg. Allg. Chem. 2005, 631, 309.CrossrefGoogle Scholar

  • [48]

    S. Zitzer, F. Schleifenbaum, T. Schleid, Synthesis, crystal structure and spectroscopic properties of Y3O2Cl[SeO3]2: Eu3+. Z. Kristallogr. 2011, 226, 651.CrossrefGoogle Scholar

  • [49]

    M. S. Wickleder, M. Ben Hamida, CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 und CuSm2(SeO3)4: Übergangsmetallhaltige Selenite von Samarium und Gadolinum. Z. Anorg. Allg. Chem. 2003, 629, 556.CrossrefGoogle Scholar

  • [50]

    I. Zimmermann, M. Johnsson, A synthetic route toward layered materials: introducing stereochemically active lone-pairs into transition metal oxohalides. Cryst. Growth Des. 2014, 14, 5252.CrossrefGoogle Scholar

  • [51]

    I. Zimmermann, R. K. Kremer, M. Johnsson, Two isostructural layered oxohalide compounds containing Mn2+, Te4+ and Si4+; crystal structure and magnetic susceptibility. J. Solid State Chem. 2014, 218, 6.CrossrefGoogle Scholar

  • [52]

    J. Richter, J. Schulenburg, A. Honecker, Quantum magnetism in two dimensions: from semi-classical Neel order to magnetic disorder, in Quantum Magnetism (Eds. U. Schollwöck, J. Richter, D. J. J. Farnell and R. F. Bishop), Springer-Verlag, Berlin, Heidelberg, pp. 85–153, 2004.Google Scholar

  • [53]

    O. Smirnova, M. Azuma, N. Kumada, Y. Kusano, M. Matsuda, Y. Shimakawa, T. Takei, Y. Yonesaki, N. Kinomura, Synthesis, crystal structure, and magnetic properties of Bi3Mn4O12(NO3) oxynitrate comprising S=3/2 honeycomb lattice. J. Am. Chem. Soc. 2009, 131, 8313.CrossrefGoogle Scholar

  • [54]

    S. W. Kim, Z. Deng, Z. Fischer, S. H. Lapidus, P. W. Stephens, M.-R. Li, M. Greenblatt, Structure and magnetic behavior of layered honeycomb tellurates, BiM(III)TeO6 (M=Cr, Mn, Fe). Inorg. Chem. 2016, 55, 10229.CrossrefGoogle Scholar

  • [55]

    S. V. Krivovichev, Structural complexity of minerals: information storage and processing in the mineral world. Mineral. Mag. 2013, 77, 275.CrossrefGoogle Scholar

  • [56]

    S. V. Krivovichev, Topological complexity of crystal structures: quantitative approach. Acta Crystallogr. A 2012, A68, 393.Google Scholar

  • [57]

    S. V. Krivovichev, Ladders of information: what contributes to the structural complexity of inorganic crystals. Z. Kristallogr. Cryst. Mater. 2018, 233, 155.CrossrefGoogle Scholar

  • [58]

    V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576.CrossrefGoogle Scholar

  • [59]

    S. V. Krivovichev, Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014, 53, 654.CrossrefGoogle Scholar

  • [60]

    D. O. Charkin, S. Zitzer, S. Greiner, S. G. Dorofeev, A. V. Olenev, P. S. Berdonosov, T. Schleid, V. A. Dolgikh, Synthesis, structures, and luminescent properties of sodium rare-earth metal(III) chloride oxotellurates(IV), Na2Ln3Cl3[TeO3]4 (Ln=Sm, Eu, Gd, Tb, Dy, and Ho). Z. Anorg. Allg. Chem. 2017, 643, 1654.CrossrefGoogle Scholar

  • [61]

    F. Abraham, O. Cousin, O. Mentré, E. M. Ketatni, Crystal structure approach of the disordered new compounds Bi~1.2M~1.2PO5.5 (M=Mn, Co, Zn): the role of oxygen-centered tetrahedra linkage in the structure of bismuth–transition metal oxy-phosphates. J. Solid State Chem. 2002, 167, 168.CrossrefGoogle Scholar

  • [62]

    S. Neov, V. Marinova, M. Reehuis, R. Sonntag, Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M=Si,Si0.995 Mn0.005, Bi0.53 Mn0.47). Appl. Phys. A 2002, 74, s1016.CrossrefGoogle Scholar

  • [63]

    A. Aliev, D. Endara, M. Huvé, M. Colmont, P. Roussel, L. Delevoye, T. T. Tran, P. S. Halasyamani, O. Mentré, Labile degree of disorder in bismuth-oxophosphate compounds: illustration through three new structural types. Inorg. Chem. 2014, 53, 861.CrossrefGoogle Scholar

  • [64]

    M. Colmont, D. Endara, A. Aliev, C. Terryn, M. Huvé, O. Mentré, Bi2O3–CuO–P2O5 system: two novel compounds built from the intergrowths oxocentered polycationic 1D-ribbons. J. Solid State Chem. 2013, 203, 266.CrossrefGoogle Scholar

  • [65]

    D. Endara, M. Colmont, M. Huvé, G. Tricot, L. Carpentier, O. Mentré, Novel tailormade Bi4MO4(PO4)2 structural type (M=Mg, Zn). Inorg. Chem. 2012, 51, 4438.CrossrefGoogle Scholar

  • [66]

    D. Endara, M. Colmont, M. Huvé, F. Capet, J. Lejay, P. Aschehoug, O. Mentré, Inorganic polar blocks into controlled acentric assemblies. Inorg. Chem. 2012, 51, 9557.CrossrefGoogle Scholar

  • [67]

    M. Colmont, M. Huvé, E. M. Ketatni, F. Abraham, O. Mentré, Double (n=2) and triple (n=3) [M4Bi2n−2O2n]x+ polycationic ribbons in the new Bi~3Cd~3.72M~1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn). J. Solid State Chem. 2003, 176, 221.CrossrefGoogle Scholar

  • [68]

    X. Mo, S.-J. Hwu, Salt-inclusion synthesis of Ba2MnSi2O7Cl. A fresnoite-type polar framework containing the acentric [Si2O7]6– polyanion in the anti-ReO3 type [(Ba2Mn)Cl]6+ cage. Inorg. Chem. 2003, 42, 3978.CrossrefGoogle Scholar

  • [69]

    P. Euzen, P. Palvadeau, M. Queignec, J. Rouxel, Preparation et caracterisation de l’oxychlorure mixte FeMn7O10Cl3. C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers. 1991, 312, 367.Google Scholar

  • [70]

    G. Buisson, Structure cristalline d’un oxychlorure de manganèse, Mn8O10Cl3. Acta Crystallogr. B 1977, 33, 1031.CrossrefGoogle Scholar

  • [71]

    K. Förg, H. A. Höppe, Synthesis, crystal structure, optical, magnetic and thermal properties of (NH4)2Mn[B2P3O11(OH)2]Cl. Z. Anorg. Allg. Chem. 2015, 641, 1009.CrossrefGoogle Scholar

  • [72]

    L. Geng, Q. Li, H. Lu, K. Dai, P. S. Halasyamani, Sb-based antiferromagnetic oxychlorides: MSb2O3(OH)Cl (M=Mn, Fe, Co) with 2D spin-dimer structures. Dalton Trans. 2016, 45, 18183.CrossrefGoogle Scholar

  • [73]

    J. R. Rea, E. Kostiner, The crystal structure of manganese chlorophosphate, Mn2(PO4)Cl. Acta Crystallogr. B 1972, 28, 2505.CrossrefGoogle Scholar

  • [74]

    I. Zimmermann, M. Johnsson, Synthesis and crystal structure of Mn3(Sb2O2)(VO4)2–x(SbO3)xCl2 (0.08<x<0.13), a vanadium oxochloride with a VV – SbIII split position. Z. Anorg. Allg. Chem. 2015, 641, 421.CrossrefGoogle Scholar

  • [75]

    J. Gao, J. Li, D. Sulejmanovic, S.-J. Hwu, M3(P2O7)22−-type open frameworks featuring [M2O8] and [M3O12] multinuclear transition-metal oxide units. Serendipitous synthesis of six polymorphic salt-inclusion magnetic solids: Na2M3(P2O7)2·ACl (M=Mn, Fe; A=Rb, Cs) and K2M3(P2O7)2·CsCl (M=Fe, Mn). Inorg. Chem. 2015, 54, 1136.CrossrefGoogle Scholar

  • [76]

    I. V. Kalinina, E. V. Peresypkina, N. V. Izarova, F. M. Nkala, U. Kortz, N. B. Kompankov, N. K. Moroz, M. N. Sokolov, Cyclic tungstoselenites based on {Se2W12} units. Inorg. Chem. 2014, 53, 2076.CrossrefGoogle Scholar

  • [77]

    M. Weil, R. K. Kremer, Crystal growth and crystal structures of six novel phases in the Mn/As/O/Cl(Br) system, as well as magnetic properties of α-Mn3(AsO4)2. J. Solid State Chem. 2017, 245, 115.CrossrefGoogle Scholar

  • [78]

    G. Engel, J. Pretzsch, V. Gramlich, W. H. Baur, The crystal structure of hydrothermally grown manganese chlorapatite, Mn5(PO4)3Cl0.9(OH)0.1. Acta Crystallogr. B 1975, 31, 1854.CrossrefGoogle Scholar

  • [79]

    T. Ozawa, Y. Takeuchi, T. Takahata, G. Donnay, J. D. H. Donnay, The pyrosmalite group of minerals; II, the layer structure of mcgillite and friedelite. Can. Mineral. 1983, 21, 7.Google Scholar

  • [80]

    T. Kato, I. Watanabe, The crystal structures of schallerite and friedelite (in Japanese). Yamaguchi Univ., Coll. Arts Bull. 1992, 26, 51.Google Scholar

  • [81]

    W. L. Queen, J. P. West, S.-J. Hwu, D. G. VanDerveer, M. C. Zarzyczny, R. A. Pavlick, The versatile chemistry and noncentrosymmetric crystal structures of salt-inclusion vanadate hybrids. Angew. Chem. Int. Ed. 2008, 47, 3791.CrossrefGoogle Scholar

  • [82]

    F. Kubel, O. Crottaz, Crystal structure of manganese chlorine boracite, Mn3B7O13Cl. Z. Kristallogr. Cryst. Mater. 1996, 211, 924.Google Scholar

  • [83]

    A.-M. Lafront, J.-C. Trombe, J. Bonvoisin, ‘Layered hydrogenselenites’ II. Synthesis, structure studies and magnetic properties of a novel series of bimetallic hydrogenselenites: [Cu(HSeO3)2MCl2(H2O)4], M(II)=Mn, Co, Ni, Cu, Zn. Inorg. Chim. Acta 1995, 238, 15.CrossrefGoogle Scholar

  • [84]

    S. J. Jensen, P. Andersen, S. E. Rasmussen, The crystal structure of CsMnCl3·2H2O. Acta Chem. Scand. 1962, 16, 1890.CrossrefGoogle Scholar

  • [85]

    W. Massa, O. V. Yakubovich, O. V. Dimitrova, Redetermination of Cs[MnCl3(H2O)2]. Acta Crystallogr. E 2007, 63, i24.CrossrefGoogle Scholar

  • [86]

    I.-H. Oh, J.-E. Kim, J. Koo, J. M. S. Park, Refinement of cesium diaquatrichloromanganate(II), CsMnCl3·2(H2O) by neutron diffraction, Cl3CsH4MnO2. Z. Kristallogr. New Cryst. Struct. 2014, 229, 265.Google Scholar

  • [87]

    A. Zalkin, J. D. Forrester, D. H. Templeton, The crystal structure of manganese dichloride tetrahydrate. Inorg. Chem. 1964, 3, 529.CrossrefGoogle Scholar

  • [88]

    Z. M. El Saffar, G. M. Brown, The structure of manganese dichloride tetrahydrate: a neutron diffraction study. Acta Crystallogr. B 1971, 27, 66.CrossrefGoogle Scholar

  • [89]

    I.-C. Hwang, K. Ha, Refinement of crystal structure of tetraaquamanganese(II) dichloride, Mn(H2O)4Cl2. Z. Kristallogr. New Cryst. Struct. 2009, 224, 517.Google Scholar

  • [90]

    B. K. Vainshtein, Crystal structure of MnCl2·2H2O (in Russian). Dokl. Akad. Nauk SSSR 1952, 83, 227.Google Scholar

  • [91]

    B. Morosin, E. J. Graeber, Crystal structures of manganese(II) and iron(II) chloride dihydrate. J. Chem. Phys. 1965, 42, 898.CrossrefGoogle Scholar

  • [92]

    S. J. Jensen, The crystal structure of KMnCl3(H2O)2. Acta Chem. Scand. 1968, 22, 641.CrossrefGoogle Scholar

  • [93]

    F. Birkelund, S. J. Jensen, Neutron diffraction study of KMnCl3(H2O)2. Acta Chem. Scand. 1972, 26, 1358.CrossrefGoogle Scholar

  • [94]

    S. J. Jensen, The crystal structures of alpha- and of beta-RbMnCl3·2H2O. Acta Chem. Scand. 1967, 21, 889.CrossrefGoogle Scholar

  • [95]

    S. J. Jensen, Neutron diffraction study of beta-RbMnCl3·2H2O. Acta Chem. Scand. 1970, 24, 3422.CrossrefGoogle Scholar

  • [96]

    S. J. Jensen, The crystal structure of K2MnCl4(H2O)2. Acta Chem. Scand. 1968, 22, 647.CrossrefGoogle Scholar

  • [97]

    S. J. Jensen, The crystal structures of Cs2MnCl4(H2O)2 and Rb2MnCl4(H2O)2. Acta Chem. Scand. 1964, 18, 2085.CrossrefGoogle Scholar

  • [98]

    J. D. Martin, R. F. Hess, P. D. Boyle, Synthesis of [NH4]MnCl2(OAc) and [NH4]2MnCl4(H2O)2 by solvothermal dehydration and structure/property correlations in a one-dimensional antiferromagnet. Inorg. Chem. 2004, 43, 3242.CrossrefGoogle Scholar

  • [99]

    S. Pagola, K. T. Trowell, K. C. Havas, Z. D. Reed, D. G. Chan, M. J. Van Dongen, G. C. DeFotis, Crystal structures of manganese and cobalt dichloride monohydrate and deuteration effects on magnetic behavior. Inorg. Chem. 2013, 52, 13341.CrossrefGoogle Scholar

  • [100]

    W. Clegg, Hexaamminechromium(III) aquapentachloromanganate(II). Acta Crystallogr. B 1978, 34, 3328.CrossrefGoogle Scholar

  • [101]

    J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, M. T. Fernández-Díaz, Evolution of the Jahn–Teller distortion of MnO6 octahedra in RMnO3 perovskites (R=Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 2000, 39, 917.CrossrefGoogle Scholar

About the article

Received: 2018-04-19

Accepted: 2018-10-02

Published Online: 2018-10-16


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, 20182088, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2088.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in