Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Ahead of print

Issues

Steric control of supramolecular association in structures of Zn(S2COR)2 with N,N′-bis(pyridin-4-ylmethyl)oxalamide

Yee Seng Tan
  • Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hao Zhe Chun
  • Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mukesh M. Jotani
  • Corresponding author
  • Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward R.T. Tiekink
  • Corresponding author
  • Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-08 | DOI: https://doi.org/10.1515/zkri-2018-2120

Abstract

The crystal and molecular structures of the one-dimensional coordination polymer [Zn(S2COEt)2(4LH2)]n (1) and binuclear [Zn(S2COCy)2]2(4LH2) (2) are described, where 4LH2 is N,N′-bis(pyridin-4-ylmethyl)ethanediamide. In 1, the Zn(S2COEt)2 entities are linked by bidentate bridging 4LH2 ligands through the pyridyl-N atoms to generate a twisted supramolecular chain. As a result of monodentate xanthate ligands, the N2S4 donor set defines a distorted tetrahedral coordination geometry and, crucially, allows the participation of the non-coordinating sulfur atoms in supramolecular association. Thus, in the crystal amide-N–H···O(amide) and amide-N–H···S(thione) hydrogen bonds link chains into a three-dimensional architecture. The substitution of the ethyl group in the xanthate ligand with a cyclohexyl group results in very different structural outcomes. In 2, a binuclear molecule is observed with the coordination geometry for zinc being defined by chelating xanthate ligands and a pyridyl-N atom with the NS4 donor set defining a highly distorted geometry. In the molecular packing, amide-N–H···S(thione) hydrogen bonds stabilise a supramolecular chain along the a-axis and these are connected into a three-dimensional arrangement by methylene-C–H···O and methylene-C–H···π(pyridyl) interactions. The relative importance of the specified intermolecular interactions and weaker, contributing contacts has been revealed by an analysis of the calculated Hirshfeld surfaces of 1 and 2.

This article offers supplementary material which is provided at the end of the article.

Keywords: coordination polymer; crystal structure analysis; Hirshfeld surface; hydrogen bonding; X-ray diffraction; zinc xanthate

References

  • [1]

    P. J. Heard, Progr. Inorg. Chem. 2005, 53, 1.Google Scholar

  • [2]

    G. Hogarth, Progr. Inorg. Chem. 2005, 53, 71.Google Scholar

  • [3]

    E. R. T. Tiekink, I. Haiduc, Progr. Inorg. Chem. 2005, 54, 127.Google Scholar

  • [4]

    I. Haiduc, D. B. Sowerby, Polyhedron 1996, 15, 2469.CrossrefGoogle Scholar

  • [5]

    E. R. T. Tiekink, CrystEngComm. 2003, 5, 101.CrossrefGoogle Scholar

  • [6]

    E. R. T. Tiekink, CrystEngComm. 2006, 8, 104.CrossrefGoogle Scholar

  • [7]

    E. R. T. Tiekink, Coord. Chem. Rev. 2017, 345, 209.CrossrefGoogle Scholar

  • [8]

    C. S. Lai, Y. X. Lim, T. C. Yap, E. R. T. Tiekink, CrystEngComm. 2002, 4, 596.CrossrefGoogle Scholar

  • [9]

    E. R. T. Tiekink, Crystals 2018, 8, article no. 18.Google Scholar

  • [10]

    M. M. Jotani, P. Poplaukhin, H. D. Arman, E. R. T. Tiekink, Acta Crystallogr. E 2016, 72, 1085.CrossrefGoogle Scholar

  • [11]

    R. F. Klevtsova, L. A. Glinskaya, E. I. Berus, S. V. Larionov, J. Struct. Chem. 2001, 42, 639.CrossrefGoogle Scholar

  • [12]

    C. S. Lai, E. R. T. Tiekink, Appl. Organomet. Chem. 2003, 17, 251.CrossrefGoogle Scholar

  • [13]

    R. F. Klevtsova, T. G. Leonova, L. A. Glinskaya, S. V. Larionov, Russ. J. Coord. Chem. 2000, 26, 172.Google Scholar

  • [14]

    J.-G. Kang, J.-S. Shin, D.-H. Cho, Y.-K. Jeong, C. Park, S. F. Soh, C. S. Lai, E. R. T. Tiekink, Cryst. Growth Des. 2010, 10, 1247.CrossrefGoogle Scholar

  • [15]

    I. Ara, F. El Bahij, M. Lachkar, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2006, 36, 399.CrossrefGoogle Scholar

  • [16]

    S. V. Larionov, L. A. Glinskaya, T. G. Leonova, R. F. Klevtsova, Russ. J. Coord. Chem. 1998, 24, 851.Google Scholar

  • [17]

    E. R. T. Tiekink, Crystal chemistry of the isomeric N,N′-bis(pyridin-n-ylmethyl)-ethanediamides, n=2, 3 or 4. in Multi-Component Crystals: Synthesis, Concepts, Function (Eds. E. R. T. Tiekink and J. Schpector-Zukerman), De Gruyter, Singapore, 2017.Google Scholar

  • [18]

    T. L. Nguyen, A. Scott, B. Dinkelmeyer, F. W. Fowler, J. W. Lauher, New J. Chem. 1998, 22, 129.CrossrefGoogle Scholar

  • [19]

    N. S. Goro, S. M. Curtis, J. A. Webb, F. W. Fowler, J. W. Lauher, Org. Lett. 2005, 7, 1891.CrossrefGoogle Scholar

  • [20]

    Q. Zeng, M. Li, D. Wu, S. Lei, C. Liu, L. Piao, Y. Yang, S. An, C. Wang, Cryst. Growth Des. 2008, 8, 869.CrossrefGoogle Scholar

  • [21]

    P. Poplaukhin, E. R. T. Tiekink, CrystEngComm. 2010, 12, 1302.CrossrefGoogle Scholar

  • [22]

    H. D. Arman, P. Poplaukhin, E. R. T. Tiekink, Acta Crystallogr. E 2017, 73, 1501.CrossrefGoogle Scholar

  • [23]

    H. D. Arman, P. Poplaukhin, E. R. T. Tiekink, Z. Kristallogr. NCS 2018, 233, 159.Google Scholar

  • [24]

    T. L. Nguyen, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2001, 123, 11057.CrossrefGoogle Scholar

  • [25]

    CrysAlis PRO, Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England, 2017.Google Scholar

  • [26]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.CrossrefGoogle Scholar

  • [27]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.CrossrefGoogle Scholar

  • [28]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.CrossrefGoogle Scholar

  • [29]

    A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.CrossrefGoogle Scholar

  • [30]

    K. Brandenburg, DIAMOND. Crystal Impact GbR, Bonn, Germany, 2006.Google Scholar

  • [31]

    A. Bondi, J. Phys. Chem. 1964, 68, 441.CrossrefGoogle Scholar

  • [32]

    L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.Google Scholar

  • [33]

    G.-H, Lee, H. T. Wang, Acta Crystallogr. C 2007, 63, m216.CrossrefGoogle Scholar

  • [34]

    G.-H. Lee, Acta Crystallogr. C 2010, 66, o241.CrossrefGoogle Scholar

  • [35]

    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.Google Scholar

  • [36]

    C. S. Lai, S. Liu, E. R. T. Tiekink, CrystEngComm. 2004, 6, 221.CrossrefGoogle Scholar

  • [37]

    C. S. Lai, E. R. T. Tiekink, CrystEngComm. 2004, 6, 593.CrossrefGoogle Scholar

  • [38]

    D. Chen, C. S. Lai, E. R. T. Tiekink, CrystEngComm. 2006, 8, 51.CrossrefGoogle Scholar

  • [39]

    M. A. Buntine, M. J. Cox, Y. X. Lim, T. C. Yap, E. R. T. Tiekink, Z. Kristallogr. 2003, 218, 56.Google Scholar

  • [40]

    B.-C. Tzeng, Y.-C. Huang, B.-S. Chen, W.-M. Wu, S.-Y. Lee, G.-H. Lee, S.-M. Peng, Inorg. Chem. 2007, 46, 186.CrossrefGoogle Scholar

  • [41]

    R. Custelcean, Chem. Commun. 2008, 295.Google Scholar

  • [42]

    M. K. Corpinot, R. Guo, D. A. Tocher, A. B. M. Buanz, S. Gaisford, S. L. Price, D.-K. Bučar, Cryst. Growth Des. 2017, 17, 827.CrossrefGoogle Scholar

  • [43]

    H. Biswal, Hydrogen bonds involving sulfur: new insights from ab initio calculations and gas phase laser spectroscopy. in Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, (Eds. S. Scheiner) vol. 19. Springer, Cham, 2015.Google Scholar

  • [44]

    J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. B 2004, 60, 627.CrossrefGoogle Scholar

  • [45]

    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012.Google Scholar

  • [46]

    M. M. Jotani, Y. S. Tan, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 403.Google Scholar

  • [47]

    M. M. Jotani, P. Poplaukhin, H. D. Arman, E. R. T. Tiekink, Z. Kristallogr. 2017, 232, 287.Google Scholar

  • [48]

    Y. S. Tan, S. N. A. Halim, K. C. Molloy, A. L. Sudlow, A. Otero-de-la-Roza, E. R. T. Tiekink, CrystEngComm. 2016, 18, 1105.CrossrefGoogle Scholar

  • [49]

    J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.Google Scholar

About the article

Received: 2018-08-01

Accepted: 2018-09-25

Published Online: 2018-10-08


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, 20182120, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2120.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in