Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Ahead of print

Issues

High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability

Jose Luis Salcedo Perez / Maciej Haranczyk
  • Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720 Berkeley, USA
  • IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nils Edvin Richard Zimmermann
Published Online: 2019-03-25 | DOI: https://doi.org/10.1515/zkri-2018-2155

Abstract

Zeolites are important microporous framework materials, where 200+ structures are known to exist and many millions so-called hypothetical materials can be computationally created. Here, we screen the “Deem” database of hypothetical zeolite structures to find experimentally feasible and industrially relevant materials. We use established and existing criteria and structure descriptors (lattice energy, local interatomic distances, TTT angles), and we develop new criteria which are based on 5-th neighbor distances to T-atoms, tetrahedral order parameters (or, tetrahedrality), and porosity and channel dimensionality. Our filter funnel for screening the most attractive zeolite materials that we construct consists of nine different types of criteria and a total of 53 subcriteria. The funnel reduces the pool of candidate materials from initially >300,000 to 70 and 33, respectively, depending on the channel dimensionality constraint applied (2- and 3-dimensional vs. only 3-dimensional channels). We find that it is critically important to define longer range and more stringent criteria such as the new 5-th neighbor distances to T-atoms and the tetrahedrality descriptor in order to succeed in reducing the huge pool of candidates to a manageable number. Apart from four experimentally achieved structures (BEC, BOG, ISV, SSF), all other candidates are hypothetical frameworks, thus, representing most valuable targets for synthesis and application. Detailed analysis of the screening data allowed us to also propose an exciting future direction how such screening studies as ours could be improved and how framework generating algorithms could be competitively optimized.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure; database; descriptors; screening; zeolites

References

  • [1]

    A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites. Kongl. Svenska Vet. Ac. Handl. 1756, 17, 120.Google Scholar

  • [2]

    E. M. Flanigen, R. W. Broach, S. T. Wilson, Introduction. in Zeolites in Industrial Separation and Catalysis, (Ed. Santi Kulprathipanja), Wiley-VCH, Weinheim, p. 1, 2010.Google Scholar

  • [3]

    S. Abate, K. Barbera, G. Centi, P. Lanzafame, S. Perathoner, Disruptive catalysis by zeolites. Catal. Sci. Technol. 2016, 6, 2485.CrossrefGoogle Scholar

  • [4]

    K. Tanabe, W. F. Hölderich, Industrial application of solid acid-base catalysts. Appl. Catal. A 1999, 181, 399.CrossrefGoogle Scholar

  • [5]

    P. Payra, P. K. Dutta, Zeolites: a primer. in Handbook of Zeolite Science and Technology, (Eds. S. M. Auerbach, K. A. Carrado, and P. K. Dutta) Marcel Dekker, Inc., New York, U.S.A., p. 1, 2003.Google Scholar

  • [6]

    M. E. Davis, R. F. Lobo, Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4, 756.CrossrefGoogle Scholar

  • [7]

    N. Zheng, X. Bu, B. Wang, P. Feng, Microporous and photoluminescent chalcogenide zeolite analogs. Science 2002, 298, 2366.CrossrefGoogle Scholar

  • [8]

    P. S. Wheatley, A. R. Butler, M. S. Crane, S. Fox, B. Xiao, A. G. Rossi, I. L. Megson, R. E. Morris, NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 2006, 128, 502.CrossrefGoogle Scholar

  • [9]

    C. Baerlocher, L. B. McCusker, D. H. Olsen, Atlas of Zeolite Framework Types, 6th ed., Elsevier, Amsterdam, The Netherlands, 2007.Google Scholar

  • [10]

    C. Baerlocher, L. B. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases. 2015.

  • [11]

    M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Z. Kristallogr. 1997, 212, 768.Google Scholar

  • [12]

    M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, M. D. Foster, Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microp. Mesopor. Mater. 2004, 74, 121.CrossrefGoogle Scholar

  • [13]

    M. D. Foster, M. M. J. Treacy, Atlas of prospective zeolite structures. http://www.hypotheticalzeolites.net. 2016.

  • [14]

    M. W. Deem, R. Pophale, P. A. Cheeseman, D. J. Earl, Computational discovery of new zeolite-like materials. J. Phys. Chem. C 2009, 113, 21353.CrossrefGoogle Scholar

  • [15]

    R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 2011, 13, 12407.CrossrefGoogle Scholar

  • [16]

    M. W. Deem, J. M. Newsame, Determination of 4-connected framework crystal structures by simulated annealing. Nature 1989, 342, 260.CrossrefGoogle Scholar

  • [17]

    M. W. Deem, J. M. Newsame, Framework crystal structure solution by simulated annealing: test application to known zeolite structures. J. Am. Chem. Soc. 1992, 114, 7189.CrossrefGoogle Scholar

  • [18]

    R. A. Curtis, M. W. Deem, A statistical mechanics study of ring size, ring shape, and the relation to pores found in zeolites. J. Phys. Chem. B 2003, 107, 8612.CrossrefGoogle Scholar

  • [19]

    D. J. Earl, M. W. Deem, Toward a database of hypothetical zeolite structures. Ind. Eng. Chem. Res. 2006, 45, 5449.CrossrefGoogle Scholar

  • [20]

    G. O. Brunner, Criteria for the evaluation of hypothetical zeolite frameworks. Zeolites 1990, 10, 612.CrossrefGoogle Scholar

  • [21]

    V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater. 2013, 25, 412.CrossrefGoogle Scholar

  • [22]

    M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Structural evaluation of systematically enumerated hypothetical uninodal zeolites. Angew. Chem. Int. Ed. 2003, 42, 3896.CrossrefGoogle Scholar

  • [23]

    M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Chemical evaluation of hypothetical uninodal zeolites. J. Am. Chem. Soc. 2004, 126, 9769.CrossrefGoogle Scholar

  • [24]

    M. D. Foster, A. Simperler, R. G. Bell, O. Delgado Friedrichs, F. A. Almeida Paz, J. Klinowski, Chemically feasible hypothetical crystalline networks. Nature Mater. 2004, 3, 234.CrossrefGoogle Scholar

  • [25]

    M. A. Zwijnenburg, A. Simperler, S. A. Wells, R. G. Bell, Tetrahedral distortion and energetic packing penalty in “zeolite” frameworks: linked phenomena? J. Phys. Chem. B 2005, 109, 14783.CrossrefGoogle Scholar

  • [26]

    A. Simperler, M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowskic, Hypothetical binodal zeolitic frameworks. Acta Crystallogr. B 2005, B61, 263.Google Scholar

  • [27]

    A. Sartbaeva, S. A. Wells, M. M. J. Treacy, M. F. Thorpe, The flexibility window in zeolites. Nature Mater. 2006, 5, 962.CrossrefGoogle Scholar

  • [28]

    D. Majda, F. A. A. Paz, O. Delgado Friedrichs, M. D. Foster, A. Simperler, R. G. Bell, J. Klinowski, Hypothetical zeolitic frameworks: in search of potential heterogeneous catalysts. J. Phys. Chem. C 2008, 112, 1040.CrossrefGoogle Scholar

  • [29]

    C. J. Dawson, V. Kapko, M. F. Thorpe, M. D. Foster, M. M. J. Treacy, Flexibility as an indicator of feasibility of zeolite frameworks. J. Phys. Chem. C 2012, 116, 16175.CrossrefGoogle Scholar

  • [30]

    Y. Li, J. Yu, R. Xu, Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed. 2013, 52, 1673.CrossrefGoogle Scholar

  • [31]

    X. Liu, S. Valero, E. Argente, V. Botti, G. Sastre, The importance of TTT angles in the feasibility of zeolites. Z. Kristallogr. 2015, 230, 291.Google Scholar

  • [32]

    J. Lu, L. Li, H. Cao, Y. Li, J. Yu, Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent O…O pairs. Phys. Chem. Chem. Phys. 2017, 19, 1276.CrossrefGoogle Scholar

  • [33]

    J.-R. Lu, C. Shi, Y. Li, J.-H. Yu, Accelerating the detection of unfeasible hypothetical zeolites via symmetric local interatomic distance criteria. Chin. Chem. Lett. 2017, 28, 1365.CrossrefGoogle Scholar

  • [34]

    E. D. Kuznetsova, O. A. Blatova, V. A. Blatov, Predicting new zeolites: a combination of thermodynamic and kinetic factors. Chem. Mater. 2018, 30, 2829.CrossrefGoogle Scholar

  • [35]

    G. Ceder, Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bullet. 2010, 35, 693.CrossrefGoogle Scholar

  • [36]

    L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, B. Smit, In silico screening of carbon-capture materials. Nature Mater. 2012, 11, 633.CrossrefGoogle Scholar

  • [37]

    A. Jain, S. P. Ong, G. Hautier, W. Chen, W. Davidson Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 2013.Google Scholar

  • [38]

    V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell, C. R. A. Catlow, Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015, 44, 7044.CrossrefGoogle Scholar

  • [39]

    A. Jain, G. Hautier, S. P. Ong, K. Persson, New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 2016, 31, 977.CrossrefGoogle Scholar

  • [40]

    C. Draxl, M. Scheffler, NOMAD: the FAIR concept for big data-driven materials science. MRS Bullet. 2018, 43, 676.CrossrefGoogle Scholar

  • [41]

    B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L. M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery. New J. Phys. 2017, 19, 013031.CrossrefGoogle Scholar

  • [42]

    G. J. Kramer, A. J. M. de Man, R. A. van Santen, Zeolites versus aluminosilicate clusters: the validity of a local description. J. Am. Chem. Soc. 1991, 113, 6435.CrossrefGoogle Scholar

  • [43]

    N. J. Henson, A. K. Cheetham, J. D. Gale, Theoretical calculations on silica frameworks and their correlation with experiment. Chem. Mater. 1994, 6, 1647.CrossrefGoogle Scholar

  • [44]

    N. E. R. Zimmermann, M. Haranczyk, History and utility of zeolite framework-type discovery from a data-science perspective. Cryst. Growth Des. 2016, 6, 3043.Google Scholar

  • [45]

    M. J. Sanders, M. Leslie, C. R. A. Catlow, Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1984, 19, 1271.Google Scholar

  • [46]

    M. Aykol, S. S. Dwaraknath, W. Sun, K. A. Persson, Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 2018, 4, eaaq0148.CrossrefGoogle Scholar

  • [47]

    N. E. R. Zimmermann, B. Vorselaars, D. Quigley, B. Peters, Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 2015, 137, 13352.CrossrefGoogle Scholar

  • [48]

    W. Vermeiren, J.-P. Gilson, Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 2009, 52, 1131.CrossrefGoogle Scholar

  • [49]

    J. D. Gale, GULP: capabilities and prospects. Z. Kristallogr. 2005, 220, 552.Google Scholar

  • [50]

    M. Mazur, P. S. Wheatley, M. Navarro, W. J. Roth, M. Položij, A. Mayoral, P. Eliášová, P. Nachtigall, J. Čejka, R. E. Morris, Synthesis of ‘unfeasible’ zeolites. Nature Chem. 2016, 8, 58.CrossrefGoogle Scholar

  • [51]

    S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 2013, 68, 314.CrossrefGoogle Scholar

  • [52]

    pymatgen’s GitHub repository. https://github.com/materialsproject/pymatgen. 2011.

  • [53]

    G. Sastre, J. D. Gale, ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microp. Mesopor. Mater. 2001, 43, 27.CrossrefGoogle Scholar

  • [54]

    T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microp. Mesopor. Mater. 2012, 149, 134.CrossrefGoogle Scholar

  • [55]

    F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, D. G. Watson, The Cambridge Crystallographic Data Center: computer-based search, retrieval, analysis and display of information. Acta Crystallogr. B 1979, 35, 2331.CrossrefGoogle Scholar

  • [56]

    U.S. Department of Energy Office of Science User Facility: National Energy Research Scientifc Computing Center (NERSC). https://www.nersc.gov/. 2019.

  • [57]

    C. Li, M. Moliner, A. Corma, Building zeolites from precrystallized units: nanoscale architecture. Angew. Chem. Int. Ed. 2018, 57, 15330.CrossrefGoogle Scholar

  • [58]

    P. S. Wheatley, J. Čejka, R. E. Morris, Synthesis of zeolites using the ADOR (Assembly-Disassembly-Organization-Reassembly) route. J. Vis. Exp. 2016, 110, 53463.Google Scholar

  • [59]

    S. A. Morris, G. P. M. Bignami, Y. Tian, M. Navarro, D. S. Firth, J. Čejka, P. S. Wheatley, D. M. Dawson, W. A. Slawinski, D. S. Wragg, R. E. Morris, S. E. Ashbrook, In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nature Chem. 2017, 9, 1012.CrossrefGoogle Scholar

  • [60]

    V. Kapko, C. Dawson, M. M. J. Treacy, M. F. Thorpe, Flexibility of ideal zeolite frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8531.CrossrefGoogle Scholar

  • [61]

    V. Kapko, C. Dawson, I. Rivin, M. M. J. Treacy, Density of mechanisms within the flexibility window of zeolites. Phys. Rev. Lett. 2011, 107, 164304.CrossrefGoogle Scholar

  • [62]

    M. M. J. Treacy, C. J. Dawson, V. Kapko, I. Rivin, Flexibility mechanisms in ideal zeolite frameworks. Philos. Trans. Royal Soc. A 2014, 372, 20120036.Google Scholar

  • [63]

    T. Conradsson, M. S. Dadachov, X. D. Zou, Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microp. Mesopor. Mater. 2000, 41, 183.CrossrefGoogle Scholar

  • [64]

    J. J. Pluth, J. V. Smith, Crystal structure of boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12- and 10-rings. Am. Mineral. 1990, 75, 501.Google Scholar

  • [65]

    L. A. Villaescusa, P. A. Barrett, M. A. Camblor, ITQ-7: a new pure silica polymorph with a three-dimensional system of large pore channels. Angew. Chem. Int. Ed. 1999, 38, 1997.CrossrefGoogle Scholar

  • [66]

    S. Elomari, A. W. Burton, K. Ong, A. R. Pradhan, I. Y. Chan, Synthesis and structure solution of zeolite SSZ-65. Chem. Mater. 2007, 19, 5485.CrossrefGoogle Scholar

  • [67]

    J. A. Martens, P. A. Jacobs, Phosphate-based zeolites and molecular sieves. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe), Springer-Verlag, Berlin, p. 53, 1999.Google Scholar

  • [68]

    J.-L. Guth, H. Kessler, Synthesis of aluminosilicate zeolites and related silica-based materials. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe). Springer-Verlag, Berlin, p. 1, 1999.Google Scholar

  • [69]

    E. M. Flanigen, B. M. Lok, R. L. Patton, S. T. Wilson, Aluminophosphate molecular sieves and the periodic table. in New Developments in Zeolite Science and Technology, Proc. 7th Int. Zeolite Conf., Tokyo, Japan, 1986. (Eds. Y. Murakami, A. Iijima, and J. W. Ward), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, p. 103, 1986.Google Scholar

  • [70]

    J. M. Bennett, W. J. Dytrych, J. J. Pluth, J. W. Richardson Jr., J. V. Smith, Structural features of aluminophosphate materials with AlP=1. Zeolites 1986, 6, 349.CrossrefGoogle Scholar

  • [71]

    B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E. M. Flanigen, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1984, 106, 6092.CrossrefGoogle Scholar

  • [72]

    P. Tian, Y. Wei, M. Ye., Z. Liu, Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015, 5, 1922.CrossrefGoogle Scholar

  • [73]

    J. V. Smith, J. M. Bennett, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates: the infinite set of ABC-6 nets; the Archimedean and σ-related nets. Am. Mineral. 1981, 66, 777.Google Scholar

  • [74]

    Y. Li, X. Li, J. Liu, F. Duan, J. Yu, In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Commun. 2015, 6, 8328.CrossrefGoogle Scholar

  • [75]

    H. F. Inman, E. L. Bradley Jr., The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Statist. Theory Meth. 1989, 18, 3851.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Nils Edvin Richard Zimmermann, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720 Berkeley, USA


Received: 2018-12-02

Accepted: 2019-02-25

Published Online: 2019-03-25


Supporting information available: List of the 215 IZA structures analysed and used for criterion definition in this work as well as our top 70 hypothetical zeolite can- didates from Deem’s database and results from a slightly different filter funnel. Furthermore, we provide a list of symbols and acronyms and abbreviations.


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, 20182155, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2018-2155.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in