Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Ahead of print

Issues

Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3

Marie Münchhalfen
  • Corresponding author
  • Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße, 150, 44801 Bochum, Deutschland, Tel.: +49-234-3224578
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Schreuer
  • Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße, 150, 44801 Bochum, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Reuther
  • Institut für Mineralogie, Technische Universität Bergakademie Freiberg, Brennhausgasse, 14, 09596 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Möckel
  • Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str., 40, 09599 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Götze
  • Institut für Mineralogie, Technische Universität Bergakademie Freiberg, Brennhausgasse, 14, 09596 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erik Mehner
  • Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße, 23, 09596 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hartmut Stöcker
  • Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße, 23, 09596 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Meyer
  • Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße, 23, 09596 Freiberg, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-22 | DOI: https://doi.org/10.1515/zkri-2019-0026

Abstract

Large single crystals of GdCa4O(BO3)3 (space group Cm) were grown by the Czochralski method. Dielectric, piezoelectric and elastic coefficients at room temperature as well as specific heat capacity, thermal expansion and cation disorder were studied employing a variety of methods including resonant ultrasound spectroscopy, differential scanning calorimetry, dilatometry and X-ray diffraction techniques. The electromechanical parameters (4 dielectric, 10 piezoelectric and 13 elastic stiffness coefficients) obtained on different samples are in excellent agreement indicating high internal consistency of our approach, whereas the values reported in literature differ significantly. The elastic behaviour of GdCa4O(BO3)3 resembles the one of structurally related fluorapatite, i.e. the elastic anisotropy is relatively small and the longitudinal effect of the deviations from Cauchy-relations exhibit a pronounced minimum along the direction of the dominating chains of cation polyhedra. GdCa4O(BO3)3 exhibits a maximum longitudinal piezoelectric effect of 7.67 × 10−12 CN−10, a value in the order of that of langasite-type materials. Significant changes of the calcium/gadolinium distribution on the 3 independent cation sites accompanied by characteristic anomalies of heat capacity and thermal expansion suggest processes of nonconvergent cation ordering above about 900 K in GdCa4O(BO3)3.

Keywords: elasticity; GdCa4O(BO3)3; heat capacity; nonconvergent cation ordering; piezoelectricity; thermal expansion

References

  • [1]

    H. Fritze, High-temperature bulk acoustic wave sensors. Meas. Sci. Technol. 2011, 22, 012002 (28 pp).Google Scholar

  • [2]

    H. Fritze, High-temperature piezoelectric crystals and devices. J. Electroceram. 2011, 26, 122.CrossrefGoogle Scholar

  • [3]

    X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, High-temperature piezoelectric sensing. Sensors 2014, 14, 144.Google Scholar

  • [4]

    S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 2011, 94, 3153.CrossrefGoogle Scholar

  • [5]

    F. Yu, X. Duan, S. Zhang, Q. Lu, X. Zhao, Rare-Earth calcium oxyborate piezoelectric crystals ReCa4O(BO3)3: growth and piezoelectric characterizations. Crystals 2014, 4, 241.CrossrefGoogle Scholar

  • [6]

    F. Yu, S. Hou, X. Zhao, S. Zhang, High-temperature piezoelectric crystals ReCa4O(BO3)3: a review. Phys. Status Solidi A 2014, 211, 574.Google Scholar

  • [7]

    T. N. Khamaganova, V. K. Trunov, B. F. Dzhurinski, The crystal structure of calcium samarium oxide borate Ca8Sm2O2(BO3)6. Russ. J. Inorg. Chem. 1991, 36, 484.Google Scholar

  • [8]

    R. Norrestam, M. Nygren, J. O. Bovin, Structural investigations of new calcium-rare earth (R) oxyborates with the composition Ca4RO(BO3)3. Chem. Mater. 1992, 4, 737.CrossrefGoogle Scholar

  • [9]

    S. Lei, Q. Huang, Y. Zheng, A. Jiang, C. Chen, Structure of calcium fluoroborate, Ca5(BO3)3F. Acta Crystallogr. 1989, C 45, 1861.Google Scholar

  • [10]

    J. G. Fletcher, F. P. Glasser, R. A. Howie, Pentacalcium triborate fluoride and its relationship to fluorapatite. Acta Crystallogr. 1991, C 47, 12.Google Scholar

  • [11]

    G. Aka, A. Kahn-Harari, D. Vivien, J.-M. Benitez, F. Salin, J. Godard, A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB). Eur. J. Solid State Inorg. Chem. 1996, 33, 727.Google Scholar

  • [12]

    R. Möckel, C. Reuther, J. Götze, REECOB: 20 years of rare earth element calcium oxoborates crystal growth research. J. Crystal Growth 2013, 371, 70.CrossrefGoogle Scholar

  • [13]

    G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, J. P. Damelet, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B 1997, 14, 2238.CrossrefGoogle Scholar

  • [14]

    R. A. Kumar, Borate crystals for nonlinear optical and Laser applications: a review. J. Chem. 2013, 2013, 6. doi: 10.1155/2013/154862.Google Scholar

  • [15]

    A. L. Bajor, J. Kisielewski, A. Klos, K. Kopczynski, T. Lukasiewicz, J. Mierczyk, J. Mlynczak, Assessment of gadolinium calcium borate (GdCOB) for laser applications. Opto-Electron. Rev. 2011, 19, 439.Google Scholar

  • [16]

    G. J. Dirksen, G. Blasse, Tetracalcium gadolinium oxoborate (Ca4GdO(BO3)3) as a new host lattice for luminescent materials. J. Alloys Comp. 1993, 191, 121.CrossrefGoogle Scholar

  • [17]

    S. Hou, F. Yu, Y. Liu, S. Zhang, Q. Lu, S. Wang, X. Zhao, Crystal growth and characterization of thulium calcium oxyborate high-temperature piezoelectric crystals. CrystEngComm 2015, 17, 553.CrossrefGoogle Scholar

  • [18]

    F. Yu, S. Hou, X. Zhao, S. Zhang, Electro-elastic properties of YCa4O(BO3)3 piezoelectric crystals. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2014, 61, 1344.Google Scholar

  • [19]

    J. Wang, X. Hu, X. Yin, R. Song, J. Wei, Z. Shao, Y. Liu, M. Jiang, Y. Tian, J. Jiang, W. Huang, Growth, defects and properties of GdCa4O(BO3)3 and Nd:GdCa4O(BO3)3 crystals. J. Mater. Res. 2001, 16, 790.CrossrefGoogle Scholar

  • [20]

    M. Nishida, T. Shiosaki, Measurement of materials constants and theoretical calculation of surface acoustic wave characteristics of GdCOB crystal. Proc. IEEE Int. Ultras., Ferroel. Freq. Control Symposium 2004, 1988.Google Scholar

  • [21]

    IEEE Standards on Piezoelectricity, Sponsored by the Standards Committee of the IEEE Ultrasonics, Ferroelectrics and Frequency Control Society, 1988.Google Scholar

  • [22]

    A. B. Ilyukhin, B. F. Dzhurinskii, Crystal structures of binary oxoborates LnCa4LaO(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2. Russ. J. Inorg. Chem. 1993, 38, 917.Google Scholar

  • [23]

    R. Möckel, M. Hengst, J. Götze, G. Heide, REECa4O(BO3)3 (REECOB): new material for high-temperature piezoelectric applications. In Minerals as Advanced Materials II, (Ed. S. V. Krivovichev), Springer-Verlag, Berlin, Heidelberg, p. 367, 2012.Google Scholar

  • [24]

    F. Mougel, A. Kahn-Harari, G. Aka, D. Pelenc, Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals. J. Mater. Chem. 1998, 8, 1619.CrossrefGoogle Scholar

  • [25]

    S. Nakai, H. Aoi, K. Hayashi, T. Katoh, T. Watanabe, Solubilities of boric acid in heavy water. J. Nuc. Sci. Technol. 1988, 25, 65.CrossrefGoogle Scholar

  • [26]

    C. Reuther, R. Möckel, M. Hengst, J. Götze, A. Schwarzer, H. Schmidt, Growth and structure of Ca4La[O|(BO3)3]. J. Crystal Growth 2011, 320, 90.CrossrefGoogle Scholar

  • [27]

    C. Reuther, R. Möckel, J. Götze, M. Hengst, G. Heide, Synthesis and optical characterization of Gd-neso-borate single crystals. Chemie der Erde 2015, 75, 317.CrossrefGoogle Scholar

  • [28]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 2008, 64, 112.CrossrefGoogle Scholar

  • [29]

    C. Andeen, J. Fontanella, D. Schuele, Accurate determination of the dielectric constant by the method of substitution. Rev. Sci. Instrum. 1970, 41, 1573.CrossrefGoogle Scholar

  • [30]

    C. Andeen, J. Fontanella, D. Schuele, Low-frequency dielectric constants of the alkaline Earth fluorides by the method of substitution. J. Appl. Phys. 1971, 42, 2216.CrossrefGoogle Scholar

  • [31]

    P. B. Ishai, M. S. Talary, A. Caduff, E. Levy, Y. Feldman, Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 2013, 24, 102001.CrossrefGoogle Scholar

  • [32]

    R. Leisure, F. Willis, Resonant ultrasound spectroscopy. J. Phys.: Condens. Matter 1997, 9, 6001.Google Scholar

  • [33]

    A. Migliori, J. Sarrao, Resonant Ultrasound Spectroscopy. Wiley, New York, 1997.Google Scholar

  • [34]

    H. Ogi, M. Fukunaga, M. Hirao, H. Ledbetter, Elastic constants, internal friction, and piezoelectric coefficient of α-TeO2. Phys. Rev. 2004, B69, 024104.Google Scholar

  • [35]

    H. Ogi, T. Ohmori, N. Nakamura, M. Hirao, Elastic, anelastic, and piezoelectric coefficients of α-quartz determined by resonance ultrasound spectroscopy. J. Appl. Phys. 2006, 100, 053511.CrossrefGoogle Scholar

  • [36]

    P. M. Davulis, A. Shyam, E. Lara-Curzio, M. Pereira da Cunha, High temperature elastic constants of langatate from RUS measurements up to 1100°C. Proc. IEEE Int. Ultrason. Symp. 2008, 2150.Google Scholar

  • [37]

    C. Hirschle, J. Schreuer, High-temperature ultrasound attenuation in langasite and langatate. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2018, 65, 1250.CrossrefGoogle Scholar

  • [38]

    H. Ogi, N. Nakamura, M. Hirao, H. Ledbetter, Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy. Ultrasonics 2004, 42, 183.CrossrefGoogle Scholar

  • [39]

    H. Ogi, N. Nakamura, K. Sato, M. Hirao, S. Uda, Elastic, anelastic, and piezoelectric coefficients of langasite: Resonance ultrasound spectroscopy with Laser-Doppler interferometry. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2003, 50, 553.CrossrefGoogle Scholar

  • [40]

    J. Schreuer, Elastic and piezoelectric properties of La3Ga5SiO14 and La3Ga5.5Ta0.5O14: an application of resonant ultrasound spectroscopy. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2002, 49, 274.Google Scholar

  • [41]

    R. Tarumi, T. Matsuhisa, Y. Shibutani, Low temperature elastic constants and piezoelectric coefficients of LiNbO3 and LiTaO3: resonant ultrasound spectroscopy measurement and lattice dynamics analysis. Jpn. J. Appl. Phys. 2012, 51, 07GA02.CrossrefGoogle Scholar

  • [42]

    N. Nakamura, H. Ogi, M. Hirao, Elastic, anelastic, and piezoelectric coefficients of GaN. J. Appl. Phys. 2012, 111, 013509.CrossrefGoogle Scholar

  • [43]

    C. S. Pandey, J. Schreuer, Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy. J. Appl. Phys. 2012, 111, 013516.CrossrefGoogle Scholar

  • [44]

    W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Z. reine u. angew. Math. 1909, 135, 31.Google Scholar

  • [45]

    C. Pawlaczyk, E. Markiewicz, A. Klos, W. Hofman, A. Pajaczkowska, Elastic and piezoelectric properties of gadolinium calcium oxoborate GdCa4O(BO3)3 crystal. Phys. Stat. Sol. (A) 2006, 203, 2103.CrossrefGoogle Scholar

  • [46]

    H. Shimizu, T. Nishida, H. Takeda, T. Shiosaki, Dielectric, elastic and piezoelectric properties of RCa4O(BO3)3 (R=rare-earth elements) crystals with monoclinic structure of point group m. J. Crystal Growth 2009, 311, 916.CrossrefGoogle Scholar

  • [47]

    H. Schmidt, A. Sotnikov, S. V. Biryukov, M. Weihnacht, Precise microacoustic characterization of new piezoelectric crystals for high-temperature sensors. AMA Conferences 2015 – Sensor 2015 and IRS 2015 2015, 396.Google Scholar

  • [48]

    F. Yu, S. Zhang, Zhao, X., D. Yuan, C.-M. Wang, T. R. Shrout, Characterization of neodymium calcium oxyborate piezoelectric crystal with monoclinic phase. Cryst. Growth Des. 2010, 10, 1871.CrossrefGoogle Scholar

  • [49]

    H. Shimizu, K. Kodama, H. Takeda, T. Nishida, T. Shikida, S. Okamura, T. Shiosaki, Evaluation of material constants and temperature properties in lanthanum calcium oxoborate LaCa4O(BO3)3 single crystals. Jpn. J. Appl. Phys. 2004, 43, 6716.CrossrefGoogle Scholar

  • [50]

    H. Shimizu, H. Takeda, T. Nishida, S. Okamura, T. Shiosaki, T. Shikida, Evaluation of material constants and SAW properties in LaCa4O(BO3)3 single crystals. 2004 IEEE Ultrasonics Symposium 2004, 1218.Google Scholar

  • [51]

    R. A. Robie, J. L. Edwards, Some Debye temperatures from single-crystal elastic constant data. J. Appl. Phys. 1966, 37, 2659.CrossrefGoogle Scholar

  • [52]

    M. C. Sha, Z. Li, R. C. Bradt, Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J. Appl. Phys. 1994, 75, 7784.CrossrefGoogle Scholar

  • [53]

    H. S. Yoon, R. E. Newnham, Elastic properties of fluorapatite. Am. Mineral. 1969, 54, 1193.Google Scholar

  • [54]

    S. Haussühl, Die Abweichungen von den Cauchy-Relationen. Phys. kondens. Mater. 1967, 6, 181.Google Scholar

  • [55]

    S. Haussühl, Interpretation of elastic properties of ionic crystals. Validity of a quasi-additivity rule? Z. Kristallogr. 1993, 205, 215.Google Scholar

  • [56]

    S. Haussühl, D. Mateika, Elastic and thermoelastic constants of gadolinium gallium garnet Gd3Ga5O12. Z. Naturfosch. 1972, A27, 1522.Google Scholar

  • [57]

    K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki, Unusual elasticity of monoclinic β-Ga2O3. J. Appl. Phys. 2018, 124, 085102–1.CrossrefGoogle Scholar

  • [58]

    W. Miller, K. Böttcher, G. Zbigniew, J. Schreuer, Numerical modelling of the Czochralski growth of β-Ga2O3. Crystals 2017, 7, 26.CrossrefGoogle Scholar

  • [59]

    H. Oda, O. L. Anderson, D. G. Isaak, I. Suzuki, Measurement of elastic properties of single-crystal CaO up to 1200 K. Phys. Chem. Miner. 1992, 19, 96.Google Scholar

  • [60]

    M. Kodama, T. Matsushita, S. Kojima, Velocity of sound and elastic properties of Li2O–B2O3 glasses. Jpn. J. Appl. Phys. 1995, 34, 2570.CrossrefGoogle Scholar

  • [61]

    A. Ballato, Basic material quartz and related innovations. In Piezoelectricity, (Eds. W. Heywang, K. Lubnitz, W. Wersing) Evolution and Future of a Technology, Vol. 114, Springer Series in Materials Science, Berlin, Heidelberg, 2008.Google Scholar

  • [62]

    S. Hou, F. Yu, Y. Tang, S. Zhang, X. Zhao, Pyroelectric properties of rare-earth calcium oxyborate crystals: ReCa4O(BO3)3 (Re: Y, Gd, Nd, and Pr). IEEE Trans. Ultrason. Ferroelect. Freq. Control 2014, 61, 561.CrossrefGoogle Scholar

  • [63]

    G. L. Hovis, B. T. Scott, C. M. Altomare, A. R. Leaman, M. D. Morris, G. P. Tomaino, F. M. McCubbin, Thermal expansion of fluorapatite-hydroxylapatite crystalline solutions. Am. Mineral 2014, 99, 2171.CrossrefGoogle Scholar

  • [64]

    R. S. Bubnova, S. K. Filatov, Strong anisotropic thermal expansion in borates. Physica B 2008, 245, 2469.Google Scholar

  • [65]

    B. P. Burton, Order-disorder phenomena and phase separation. In Encyclopedia of Materials: Science and Technology, (Eds. K. H. J. Buschow, B. Ilschner, E. J. Kramer, S. Mahajan, P. Veyssire) Elsevier, Oxford, 2001.Google Scholar

  • [66]

    M. A. Carpenter, R. Powell, E. K. H. Salje, Thermodynamics of nonconvergent cation ordering in minerals: I. An alternative approach. Am. Mineral. 1994, 79, 1053.Google Scholar

  • [67]

    J. B. Thompson, Chemical reactions in crystals. Am. Mineral. 1969, 54, 341.Google Scholar

About the article

Received: 2019-05-02

Accepted: 2019-08-02

Published Online: 2019-08-22


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, 20190026, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2019-0026.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in