Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung A

A Journal of Physical Sciences

Editor-in-Chief: Holthaus, Martin

Editorial Board: Fetecau, Corina / Kiefer, Claus

12 Issues per year

IMPACT FACTOR 2016: 1.432

CiteScore 2017: 1.30

SCImago Journal Rank (SJR) 2017: 0.403
Source Normalized Impact per Paper (SNIP) 2017: 0.632

See all formats and pricing
More options …
Volume 70, Issue 10


Structures, Stabilities, and Electronic Properties of Small-Sized Zr2Sin (n=1–11) Clusters: A Density Functional Study

Jing-He Wu / Chang-Xin Liu / Ping Wang / Shuai Zhang / Gui Yang
  • Corresponding author
  • Department of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cheng Lu
Published Online: 2015-08-01 | DOI: https://doi.org/10.1515/zna-2015-0261


Ab initio methods based on density functional theory at B3LYP level have been applied in investigating the equilibrium geometries, growth patterns, relative stabilities, and electronic properties of Zr2-doped Sin clusters. The optimisation results shown that the lowest-energy configurations for Zr2Sin clusters do not keep the corresponding silicon framework unchanged, which reflects that the doped Zr atoms dramatically affect the most stable structures of the Sin clusters. By analysing the relative stabilities, it is found that the doping of zirconium atoms reduces the chemical stabilities of silicon host. The Zr2Si4 and Zr2Si7 clusters are the magic numbers. The natural population and natural electronic configuration analyses indicated that the Zr atoms possess positive charge for n=1–6 and negative charge for n=7–11. In addition, the chemical hardness, chemical potential, infrared, and Raman spectra are also discussed.

This article offers supplementary material which is provided at the end of the article.

Keywords: Density Functional Method; Electronic Properties; Geometrical Structures; Zr2SinClusters


  • [1]

    V. M. Medel, A. C. Reber, V. Chauhan, P. Sen, A. M. Köster, et al., J. Am. Chem. Soc. 136, 8229 (2014).Google Scholar

  • [2]

    M. Ju, J. Lv, X. Y. Kuang, L. P. Ding, C. Lu, et al., RSC Adv. 5, 6560 (2015).Google Scholar

  • [3]

    N. Minh Tam, T. B. Tai, and M. T. Nguyen, J. Phys. Chem. C 116, 20086 (2012).Google Scholar

  • [4]

    A. W. Pelzer, J. Jellinek, and K. A. Jackson, J. Phys. Chem. A 117, 10407 (2013).Google Scholar

  • [5]

    L. Wang, D. Die, S. J. Wang, and Z. Q. Zhao, J. Phys. Chem. Solids 76, 10 (2015).Google Scholar

  • [6]

    J. Q. Wen, T. Xia, H. Zhou, and J. F. Wang, J. Phys. Chem. Solids 75, 528 (2014).Google Scholar

  • [7]

    S. M. Beck, J. Chem. Phys. 87, 4233 (1987).Google Scholar

  • [8]

    S. Li, R. J. Van Zee, W. Weltner Jr., and K. Raghavachari, Chem. Phys. Lett. 243, 275 (1995).Google Scholar

  • [9]

    A. Fielicke, J. T. Lyon, M. Haertelt, G. Meijer, P. Claes, et al., J. Chem. Phys. 131, 171105 (2009).Google Scholar

  • [10]

    M. Haertelt, J. T. Lyon, P. Claes, J. De. Haeck, P. Lievens, et al., J. Chem. Phys. 136, 064301 (2012).Google Scholar

  • [11]

    C. Pouchan, D. Bégue, and D. Y. Zhang, J. Chem. Phys. 121, 4628 (2004).Google Scholar

  • [12]

    X. L. Zhu, X. C. Zeng, Y. A. Lei, and B. Pan, J. Chem. Phys. 120, 8985 (2004).Google Scholar

  • [13]

    G. Maroulis, D. Begué, and C. Pouchan, J. Chem. Phys. 119, 794 (2003).Google Scholar

  • [14]

    Y. J. Li, J. T. Lyon, A. P. Woodham, A. Fielicke, and E. Janssens, Chem. Phys. Chem. 15, 328 (2014).Google Scholar

  • [15]

    H. Hiura, T. Miyazaki, and T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001).Google Scholar

  • [16]

    M. Oharaa, K. Koyasu, A. Nakajima, and K. Kaya, Chem. Phys. Lett. 371, 490 (2003).Google Scholar

  • [17]

    K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima, J. Chem. Phys. 129, 214301 (2008).Google Scholar

  • [18]

    X. Y. Kong, X. J. Deng, H. G. Xu, Z. Yang, X. L. Xu, et al., J. Chem. Phys. 138, 244312 (2013).Google Scholar

  • [19]

    J. Lu and S. Nagase, Phys. Rev. Lett. 90, 115506 (2003).Google Scholar

  • [20]

    L. Ma, J. J. Zhao, J. G. Wang, Q. L. Lu, L. Z. Zhu, et al., Chem. Phys. Lett. 411, 279 (2005).Google Scholar

  • [21]

    L. J. Guo, X. Liu, G. F. Zhao, and Y. H. Luo, J. Chem. Phys. 126, 234704 (2007).Google Scholar

  • [22]

    J. Lu, J. C. Yang, Y. L. Kang, and H. M. Ning, J. Mol. Model. 20, 2114 (2014).Google Scholar

  • [23]

    K. Jackson and B. Nellermoe, Chem. Phys. Lett. 254, 249 (1996).Google Scholar

  • [24]

    V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 87, 045503 (2001).Google Scholar

  • [25]

    V. Kumar and Y. Kawazoe, Phys. Rev. B 65, 073404 (2002).Google Scholar

  • [26]

    Q. Sun, Q. Wang, T. M. Briere, V. Kumar, and Y. Kawazoe, Phys. Rev. B 65, 235417 (2002).Google Scholar

  • [27]

    J. Wang and J. G. Han, J. Chem. Phys. 123, 064306 (2005).Google Scholar

  • [28]

    J. Wang and J. H. Liu, J. Phys. Chem. A 112, 4562 (2008).Google Scholar

  • [29]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B 82, 094116 (2010).Google Scholar

  • [30]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).Google Scholar

  • [31]

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, et al. Chem. Phys. 137, 224108 (2012).Google Scholar

  • [32]

    R. Eberhart and J. Kennedy, A New Optimizer Using Particle Swarm Theory, IEEE, New York 1995.Google Scholar

  • [33]

    J. Kennedy and R. Eberhart, Particle Swarm Optimization, IEEE, Piscataway 1995.Google Scholar

  • [34]

    A. D. Becke, Phys. Rev. A 38, 3098 (1988).Google Scholar

  • [35]

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).Google Scholar

  • [36]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Pittsburgh, PA 2009.Google Scholar

  • [37]

    K. D. D. Gunaratne, A. Hazra, and A. W. Castleman Jr., J. Chem. Phys. 134, 204303 (2011).Google Scholar

  • [38]

    J. R. Lombardi and B. Davis, Chem. Rev. 102, 2431 (2002).Google Scholar

  • [39]

    C. A. Arrington, T. Blume, M. D. Morse, M. Doversal, and U. Sassenberg, J. Phys. Chem. 98, 1398 (1994).Google Scholar

  • [40]

    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York 1979.Google Scholar

  • [41]

    R. Robles and S. N. Khanna, Phys. Rev. B 77, 235441 (2008).Google Scholar

  • [42]

    A. M. Gao, G. L. Li, Y. Chang, H. Y. Chen, D. Finlow, et al., Inorg. Chim. Acta. 367, 51 (2011).Google Scholar

  • [43]

    R. Robles and S. N. Khanna, J. Chem. Phys. 130, 164313 (2009).Google Scholar

  • [44]

    S. Zhang, Z. P. Wang, C. Lu, C. Wang, G. Q. Li, et al., Z. Naturforsch. 69a, 481 (2014).Google Scholar

  • [45]

    J. G. Han, R. N. Zhao, and Y. H. Duan, J. Phys. Chem. A 111, 2148 (2007).Google Scholar

  • [46]

    R. N. Zhao, J. G. Han, and Y. H. Duan, Thin. Solid. Films. 556, 571 (2014).Google Scholar

  • [47]

    W. Q. Zhang, T. G. Liu, and Y. Z. Bai, Comput. Theor. Chem. 986, 57 (2012).Google Scholar

  • [48]

    P. Shao, X. Y. Kuang, L. P. Ding, M. M. Zhong, and Z. H. Wang, Physica B 407, 4379 (2012).Google Scholar

  • [49]

    S. Zhang, A. H. Wang, Z. H. Gao, C. Lu, and G. Q. Li, Commun. Theor. Phys. 61, 106 (2014).Google Scholar

  • [50]

    D. Die, X. Y. Kuang, J. J. Guo, and B. X. Zheng, J. Phys. Chem. Solids 71, 770 (2010).Google Scholar

  • [51]

    S. Zhang, J. H. Wu, J. W. Cui, C. Lu, P. P. Zhou, et al., J. Mol. Model. 20, 2242 (2014).Google Scholar

  • [52]

    R. G. Pearson, Chemical Hardness: Applications from Molecules to Solids, Weinheim, Wiley-VCH 1997.Google Scholar

  • [53]

    W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen, Solid State Physics, Vol. 40, Acadmic, San Diego 1987.Google Scholar

  • [54]

    K. Fuke, K. Tsukamoto, F. Misaizu, and M. Sanekata, J. Chem. Phys. 99, 7807 (1993).Google Scholar

  • [55]

    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York 1989.Google Scholar

  • [56]

    J. F. Jia, X. R. Li, Y. N. Li, L. J. Ma, and H. S. Wu, Comput. Theor. Chem. 1027, 128 (2014).Google Scholar

About the article

Corresponding authors: Shuai Zhang, Department of Physics, Nanyang Normal University, Nanyang 473061, China, E-mail: ; and Gui Yang, Department of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China, E-mail:

Received: 2015-06-10

Accepted: 2015-07-08

Published Online: 2015-08-01

Published in Print: 2015-10-01

Citation Information: Zeitschrift für Naturforschung A, Volume 70, Issue 10, Pages 805–814, ISSN (Online) 1865-7109, ISSN (Print) 0932-0784, DOI: https://doi.org/10.1515/zna-2015-0261.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in