Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung A

A Journal of Physical Sciences

Editor-in-Chief: Holthaus, Martin

Editorial Board: Fetecau, Corina / Kiefer, Claus

12 Issues per year

IMPACT FACTOR 2016: 1.432

CiteScore 2017: 1.30

SCImago Journal Rank (SJR) 2017: 0.403
Source Normalized Impact per Paper (SNIP) 2017: 0.632

See all formats and pricing
More options …
Volume 71, Issue 1


Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n + (n = 1–5) Clusters

A. Li-Ta
  • Chemistry and Chemical Engineering College, Inner Mongolia University for the Nationalities, Tongliao 028043, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhang Yu / Bai Jian-Ping / Zhang Shuai / Li Gen-Quan / Chen Shan-Jun
  • Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tian Yong-Hong
  • Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-06 | DOI: https://doi.org/10.1515/zna-2015-0376


We have performed unbiased searches for the global minimum structures of (FeS)n + (n=1–5) clusters using the CALYPSO method combined with density functional theory geometric optimisation. A large number of low-lying isomers are optimised at the B3PW91/6-311+G* theory level. Accurate ab initio calculations and harmonic vibrational analyses are undertaken to ensure that the optimised geometries are true minimum. They show that the most stable structures begin to exhibit three-dimensional (3D) configurations at n=3. The relative stabilities of (FeS)n + clusters for the ground-state structures are analysed on the basis of binding energies and HOMO-LUMO gaps. The theoretical results indicate that the binding energies of (FeS)n + tend to increase with cluster size. The maxima of HOMO-LUMO gaps (3.88 eV) for the most stable configurations appear at (FeS)+. Moreover, we have found that the (FeS)2+ cluster possesses the lowest local magnetic moments compared to the other species. The origin of this magnetic phenomenon is also analysed in detail.

Keywords: Electronic Properties; (FeS)n + Clusters; Ground-State Structures; Stability


  • [1]

    J. Ulises Reveles and S. N. Khanna, Phys. Rev. B 72, 165413 (2005).Google Scholar

  • [2]

    T. V. Harris and R. K. Szilagyi, J. Comput. Chem. 35, 540 (2014).CrossrefGoogle Scholar

  • [3]

    L. Ma, J. G. Wang, Y. Y. Hao, and G. H. Wang, Comp. Mater. Sci. 68, 166 (2013).Google Scholar

  • [4]

    L. P. Ding, X. Y. Kuang, P. Shao, and M. M. Zhong, J. Alloy. Compd. 573, 133 (2013).Google Scholar

  • [5]

    A. T. P. Carvalho, A. F. S. Teixeira, and M. J. Ramos, J. Comput. Chem. 34, 1540 (2013).CrossrefGoogle Scholar

  • [6]

    J. H. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014).Google Scholar

  • [7]

    R. Lill, Nature 460, 831 (2009).Google Scholar

  • [8]

    D. Rickard and G. W. Luther, Chem. Rev. 107, 514 (2007).Google Scholar

  • [9]

    C. Binda, A. Coda, A. Aliverti, G. Zanetti, and A. Mattevi, Acta. Cryst. D 54, 1353 (1998).Google Scholar

  • [10]

    P. J. Kiley and H. Beinert, Curr. Opin. Microbiol. 6, 181 (2003).CrossrefGoogle Scholar

  • [11]

    G. H. Stout, S. Turley, L. C. Sieker, and L. H. Jensen, Proc. Natl. Acad. Sci. 85, 1020 (1988).Google Scholar

  • [12]

    H. Beinert, FASEB J 4, 2483 (1990).Google Scholar

  • [13]

    P. J. Mitchell, Biochem. 97, 1 (1985).Google Scholar

  • [14]

    A. L. Han, T. Yagi, and T. Hatefi, Arch. Biochem. Biophys. 275, 166 (1989).Google Scholar

  • [15]

    H. Beinert, M. C. Kennedy, and C. D. Stout, Chem. Rev. 96, 2335 (1996).Google Scholar

  • [16]

    O. A. Lukianova and S. S. David, Curr. Opin. Chem. Biol. 9, 145 (2005).CrossrefGoogle Scholar

  • [17]

    E. M. Maes, M. J. Knapp, R. S. Czernuszewicz, and D. N. Hendrickson, J. Phys. Chem. B 104, 10878 (2000).Google Scholar

  • [18]

    H. J. Zhai, B. Kiran, and L. S. Wang, J. Phys. Chem. A 107, 2821 (2003).Google Scholar

  • [19]

    A. Nakajima, T. Hayase, F. Hayakawa, and K. Kaya, Chem. Phys. Lett. 208, 381 (1997).Google Scholar

  • [20]

    D. O. Hayward and B. M. W. Trapnell, Chemisorption (2nd ed.), Butterworths, London 1964.Google Scholar

  • [21]

    Z. D. Yu, N. Zhang, X. J. Wu, Z. Gao, Q. Zhu, and F. N. Kong, J. Chem. Phys. 99, 1765 (1993).Google Scholar

  • [22]

    R. L. Whetten, D. M. Cox, D. J. Trevorand, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).Google Scholar

  • [23]

    J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012).Google Scholar

  • [24]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B 82, 094116 (2010).CrossrefGoogle Scholar

  • [25]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).Google Scholar

  • [26]

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma, J. Chem. Phys. 137, 224108 (2012).Google Scholar

  • [27]

    L. Zhu, H. Y. Liu, C. J. Pickard, G. T. Zou, and Y. M. Ma, Nature Chem. 6, 644 (2014).Google Scholar

  • [28]

    S. H. Lu, Y. C. Wang, H. Y. Liu, M. S. Miao, and Y. M. Ma, Nature Commun. 5, 3666 (2014).Google Scholar

  • [29]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Pittsburgh, PA 2009.Google Scholar

  • [30]

    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).Google Scholar

  • [31]

    C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossrefGoogle Scholar

  • [32]

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).Google Scholar

  • [33]

    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).Google Scholar

  • [34]

    J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic Structure of Solids, Akademie Verlag, Berlin 1991.Google Scholar

  • [35]

    J. N. Harvey, C. Heinemann, A. Fiedler, D. Schroder, and H. Schwarz, Chem. Eur. J. 2, 1230 (1996).CrossrefGoogle Scholar

  • [36]

    T. J. MacMahon, T. C. Jackson, and B. S. Freiser, J. Am. Chem. Soc. 111, 422 (1989).Google Scholar

  • [37]

    R. F. Barrow and C. Cousins, Adv. High. Temp. Chem. 4, 161 (1971).CrossrefGoogle Scholar

  • [38]

    T. C. Devore and H. F. Franzen, High. Temp. Sci. 7, 220 (1975).Google Scholar

  • [39]

    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold, New York 1974.Google Scholar

  • [40]

    N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, and K. Kaya, J. Chem. Phys. 104, 3413 (1996).Google Scholar

  • [41]

    A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).Google Scholar

  • [42]

    T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).CrossrefGoogle Scholar

  • [43]

    T. Lu and F. W. Chen, J. Mol. Graph. Model. 38, 314 (2012).CrossrefGoogle Scholar

About the article

Corresponding author: Zhang Shuai, Department of Physics, Nanyang Normal University, Nanyang 473061, China, E-mail:

Received: 2015-08-25

Accepted: 2015-10-12

Published Online: 2015-11-06

Published in Print: 2016-01-01

Citation Information: Zeitschrift für Naturforschung A, Volume 71, Issue 1, Pages 45–51, ISSN (Online) 1865-7109, ISSN (Print) 0932-0784, DOI: https://doi.org/10.1515/zna-2015-0376.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in