Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Zeitschrift für Naturforschung A

A Journal of Physical Sciences

Editor-in-Chief: Holthaus, Martin

Editorial Board Member: Fetecau, Corina / Kiefer, Claus / Röpke, Gerd / Steeb, Willi-Hans

12 Issues per year


IMPACT FACTOR 2016: 1.432

Cite Score 2016: 1.35

SCImago Journal Rank (SJR) 2015: 0.295
Source Normalized Impact per Paper (SNIP) 2015: 0.485

Online
ISSN
1865-7109
See all formats and pricing
In This Section
Volume 71, Issue 1 (Jan 2016)

Issues

Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n + (n = 1–5) Clusters

A. Li-Ta
  • Chemistry and Chemical Engineering College, Inner Mongolia University for the Nationalities, Tongliao 028043, China
/ Zhang Yu
  • Department of Physics, Nanyang Normal University, Nanyang 473061, China
/ Bai Jian-Ping
  • Department of Physics, Nanyang Normal University, Nanyang 473061, China
/ Zhang Shuai
  • Corresponding author
  • Department of Physics, Nanyang Normal University, Nanyang 473061, China
  • Email:
/ Li Gen-Quan
  • Department of Physics, Nanyang Normal University, Nanyang 473061, China
/ Chen Shan-Jun
  • Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
/ Tian Yong-Hong
  • Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Published Online: 2015-11-06 | DOI: https://doi.org/10.1515/zna-2015-0376

Abstract

We have performed unbiased searches for the global minimum structures of (FeS)n + (n=1–5) clusters using the CALYPSO method combined with density functional theory geometric optimisation. A large number of low-lying isomers are optimised at the B3PW91/6-311+G* theory level. Accurate ab initio calculations and harmonic vibrational analyses are undertaken to ensure that the optimised geometries are true minimum. They show that the most stable structures begin to exhibit three-dimensional (3D) configurations at n=3. The relative stabilities of (FeS)n + clusters for the ground-state structures are analysed on the basis of binding energies and HOMO-LUMO gaps. The theoretical results indicate that the binding energies of (FeS)n + tend to increase with cluster size. The maxima of HOMO-LUMO gaps (3.88 eV) for the most stable configurations appear at (FeS)+. Moreover, we have found that the (FeS)2+ cluster possesses the lowest local magnetic moments compared to the other species. The origin of this magnetic phenomenon is also analysed in detail.

Keywords: Electronic Properties; (FeS)n + Clusters; Ground-State Structures; Stability

References

  • [1]

    J. Ulises Reveles and S. N. Khanna, Phys. Rev. B 72, 165413 (2005).

  • [2]

    T. V. Harris and R. K. Szilagyi, J. Comput. Chem. 35, 540 (2014). [Crossref]

  • [3]

    L. Ma, J. G. Wang, Y. Y. Hao, and G. H. Wang, Comp. Mater. Sci. 68, 166 (2013).

  • [4]

    L. P. Ding, X. Y. Kuang, P. Shao, and M. M. Zhong, J. Alloy. Compd. 573, 133 (2013).

  • [5]

    A. T. P. Carvalho, A. F. S. Teixeira, and M. J. Ramos, J. Comput. Chem. 34, 1540 (2013). [Crossref]

  • [6]

    J. H. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014).

  • [7]

    R. Lill, Nature 460, 831 (2009).

  • [8]

    D. Rickard and G. W. Luther, Chem. Rev. 107, 514 (2007).

  • [9]

    C. Binda, A. Coda, A. Aliverti, G. Zanetti, and A. Mattevi, Acta. Cryst. D 54, 1353 (1998).

  • [10]

    P. J. Kiley and H. Beinert, Curr. Opin. Microbiol. 6, 181 (2003). [Crossref]

  • [11]

    G. H. Stout, S. Turley, L. C. Sieker, and L. H. Jensen, Proc. Natl. Acad. Sci. 85, 1020 (1988).

  • [12]

    H. Beinert, FASEB J 4, 2483 (1990).

  • [13]

    P. J. Mitchell, Biochem. 97, 1 (1985).

  • [14]

    A. L. Han, T. Yagi, and T. Hatefi, Arch. Biochem. Biophys. 275, 166 (1989).

  • [15]

    H. Beinert, M. C. Kennedy, and C. D. Stout, Chem. Rev. 96, 2335 (1996).

  • [16]

    O. A. Lukianova and S. S. David, Curr. Opin. Chem. Biol. 9, 145 (2005). [Crossref]

  • [17]

    E. M. Maes, M. J. Knapp, R. S. Czernuszewicz, and D. N. Hendrickson, J. Phys. Chem. B 104, 10878 (2000).

  • [18]

    H. J. Zhai, B. Kiran, and L. S. Wang, J. Phys. Chem. A 107, 2821 (2003).

  • [19]

    A. Nakajima, T. Hayase, F. Hayakawa, and K. Kaya, Chem. Phys. Lett. 208, 381 (1997).

  • [20]

    D. O. Hayward and B. M. W. Trapnell, Chemisorption (2nd ed.), Butterworths, London 1964.

  • [21]

    Z. D. Yu, N. Zhang, X. J. Wu, Z. Gao, Q. Zhu, and F. N. Kong, J. Chem. Phys. 99, 1765 (1993).

  • [22]

    R. L. Whetten, D. M. Cox, D. J. Trevorand, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).

  • [23]

    J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012).

  • [24]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B 82, 094116 (2010). [Crossref]

  • [25]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).

  • [26]

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma, J. Chem. Phys. 137, 224108 (2012).

  • [27]

    L. Zhu, H. Y. Liu, C. J. Pickard, G. T. Zou, and Y. M. Ma, Nature Chem. 6, 644 (2014).

  • [28]

    S. H. Lu, Y. C. Wang, H. Y. Liu, M. S. Miao, and Y. M. Ma, Nature Commun. 5, 3666 (2014).

  • [29]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Pittsburgh, PA 2009.

  • [30]

    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

  • [31]

    C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). [Crossref]

  • [32]

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  • [33]

    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

  • [34]

    J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic Structure of Solids, Akademie Verlag, Berlin 1991.

  • [35]

    J. N. Harvey, C. Heinemann, A. Fiedler, D. Schroder, and H. Schwarz, Chem. Eur. J. 2, 1230 (1996). [Crossref]

  • [36]

    T. J. MacMahon, T. C. Jackson, and B. S. Freiser, J. Am. Chem. Soc. 111, 422 (1989).

  • [37]

    R. F. Barrow and C. Cousins, Adv. High. Temp. Chem. 4, 161 (1971). [Crossref]

  • [38]

    T. C. Devore and H. F. Franzen, High. Temp. Sci. 7, 220 (1975).

  • [39]

    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold, New York 1974.

  • [40]

    N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, and K. Kaya, J. Chem. Phys. 104, 3413 (1996).

  • [41]

    A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

  • [42]

    T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012). [Crossref]

  • [43]

    T. Lu and F. W. Chen, J. Mol. Graph. Model. 38, 314 (2012). [Crossref]

About the article

Corresponding author: Zhang Shuai, Department of Physics, Nanyang Normal University, Nanyang 473061, China, E-mail:


Received: 2015-08-25

Accepted: 2015-10-12

Published Online: 2015-11-06

Published in Print: 2016-01-01



Citation Information: Zeitschrift für Naturforschung A, ISSN (Online) 1865-7109, ISSN (Print) 0932-0784, DOI: https://doi.org/10.1515/zna-2015-0376. Export Citation

Comments (0)

Please log in or register to comment.
Log in