Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung A

A Journal of Physical Sciences

Editor-in-Chief: Holthaus, Martin

Editorial Board: Fetecau, Corina / Kiefer, Claus

12 Issues per year

IMPACT FACTOR 2016: 1.432

CiteScore 2017: 1.30

SCImago Journal Rank (SJR) 2017: 0.403
Source Normalized Impact per Paper (SNIP) 2017: 0.632

See all formats and pricing
More options …
Volume 73, Issue 1


Impact of Deposition Rate on the Structural and Magnetic Properties of Sputtered Ni/Cu Multilayer Thin Films

Ali Karpuz
  • Corresponding author
  • Department of Physics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman 70100, Turkey, Phone: 90-338-2262000, Fax: 90-338-2262150
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salih Colmekci / Hakan Kockar / Hilal Kuru / Mehmet Uckun
Published Online: 2017-11-30 | DOI: https://doi.org/10.1515/zna-2017-0207


The structural and corresponding magnetic properties of Ni/Cu films sputtered at low and high deposition rates were investigated as there is a limited number of related studies in this field. 5[Ni(10 nm)/Cu(30 nm)] multilayer thin films were deposited using two DC sputtering sources at low (0.02 nm/s) and high (0.10 nm/s) deposition rates of Ni layers. A face centered cubic phase was detected for both films. The surface of the film sputtered at the low deposition rate has a lot of micro-grains distributed uniformly and with sizes from 0.1 to 0.4 μm. Also, it has a vertical acicular morphology. At high deposition rate, the number of micro-grains considerably decreased, and some of their sizes increased up to 1 μm. The surface of the Ni/Cu multilayer deposited at the low rate has a relatively more grainy and rugged structure, whereas the surface of the film deposited at the high rate has a relatively larger lateral size of surface grains with a relatively fine morphology. Saturation magnetisation, Ms, values were 90 and 138 emu/cm3 for deposition rates of 0.02 and 0.10 nm/s, respectively. Remanence, Mr, values were also found to be 48 and 71 emu/cm3 for the low and high deposition rates, respectively. The coercivity, Hc, values were 46 and 65 Oe for the low and high Ni deposition rates, respectively. The changes in the film surfaces provoked the changes in the Hc values. The Ms, Mr, and Hc values of the 5[Ni(10 nm)/Cu(30 nm)] films can be adjusted considering the surface morphologies and film contents caused by the different Ni deposition rates.

Keywords: Magnetic Properties; Ni/Cu Multilayer Thin Films; Sputtering Technique; Surface Morphology


  • [1]

    E. M. Ho and A. K. Petford-Long, J. Magn. Magn. Mater. 156, 65 (1996).CrossrefGoogle Scholar

  • [2]

    J. B. Yi, Y. Z. Zhou, J. Ding, G. M. Chow, Z. L. Dong, et al., J. Magn. Magn. Mater. 284, 303 (2004).CrossrefGoogle Scholar

  • [3]

    H. Tokushige and T. Miyagawa, IEEE Transl. J. Magn. Jpn. 5, 575 (1990).CrossrefGoogle Scholar

  • [4]

    L. Albini, G. Carlotti, C. Dragoni, G. Gubbiotti, L. Verdini, et al., Surf. Sci. 482–485, 998 (2001).Google Scholar

  • [5]

    A. V. Svalov, B. González Asensio, A. A. Chlenova, P. A. Savin, A. Larrañaga, et al., Vacuum 119, 245 (2015).CrossrefGoogle Scholar

  • [6]

    N. Matsushita, C. Ping Chong, T. Mizutani, and M. Abe, IEEE Trans. Magn. 38, 3156 (2002).CrossrefGoogle Scholar

  • [7]

    B. Gągorowska, M. Duś-Sıtek, and M. Nabıałek, Opt. Appl. XXXIX, 839 (2009).Google Scholar

  • [8]

    R. S. Liu, S. C. Chang, I. Baginskiy, S. F. Hu, and C. Y. Huang, Pramana J. Phys. 67, 85 (2006).CrossrefGoogle Scholar

  • [9]

    C. Nacereddine, A. Layadi, A. Guittoum, S.-M. Chérif, T. Chauveau, et al., Mater. Sci. Eng. B 136, 197 (2007).CrossrefGoogle Scholar

  • [10]

    H. Kuru, H. Kockar, M. Alper, and M. Haciismailoglu, J. Mater. Sci. Mater. Electron. 26, 5014 (2015).CrossrefGoogle Scholar

  • [11]

    H. Kuru, H. Kockar, and M. Alper, J. Supercond. Nov. Magn. 26, 779 (2013).CrossrefGoogle Scholar

  • [12]

    H. Ohsaki, Y. Tachibana, A. Hayashi, A. Mitsui, and Y. Hayashi, Thin Solid Films 351, 57 (1999).CrossrefGoogle Scholar

  • [13]

    S. Mohammad Elahi, V. Dalouji, D. Mehrparvar, and S. Valedbagi, Mol. Cryst. Liq. Cryst. 587, 105 (2013).CrossrefGoogle Scholar

  • [14]

    K. Hedayati and G. Nabiyouni, Appl. Phys. A 116, 1605 (2014).CrossrefGoogle Scholar

  • [15]

    S. K. Ghosh, S. Singh, and S. Basu, Mater. Chem. Phys. 120, 199 (2010).CrossrefGoogle Scholar

  • [16]

    B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, USA 1978.Google Scholar

  • [17]

    M. Tsunoda, M. Takahashi, and T. Miyazaki, IEEE Transl. J. Magn. Jpn. 9, 133 (1994).Google Scholar

  • [18]

    X. L. Yan, E. Coetsee, J. Y. Wang, H. C. Swart, and J. J. Terblans, Appl. Surf. Sci. 411, 73 (2017).CrossrefGoogle Scholar

  • [19]

    D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapter 4, Chapman and Hall, London 1991.Google Scholar

  • [20]

    R. Pereira, P. C. Camargo, A. J. A. de Oliveira, and E. C. Pereira, Surf. Coat. Technol. 311, 274 (2017).CrossrefGoogle Scholar

  • [21]

    A. Karpuz, H. Kockar, and M. Alper, J. Mater. Sci. Mater. Electron. 24, 3376 (2013).CrossrefGoogle Scholar

  • [22]

    K. Hedayati, Appl. Phys. A 118, 975 (2015).CrossrefGoogle Scholar

  • [23]

    O. Ergeneman, K. M. Sivaraman, S. Pané, E. Pellicer, A. Teleki, et al., Electrochimica Acta 56, 1399 (2011).CrossrefGoogle Scholar

About the article

Received: 2017-06-14

Accepted: 2017-11-04

Published Online: 2017-11-30

Published in Print: 2017-12-20

Citation Information: Zeitschrift für Naturforschung A, Volume 73, Issue 1, Pages 85–90, ISSN (Online) 1865-7109, ISSN (Print) 0932-0784, DOI: https://doi.org/10.1515/zna-2017-0207.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in